合成氣制備增塑劑醇的初步研究 合成氣制備增塑劑醇的初步研究

合成氣制備增塑劑醇的初步研究

  • 期刊名字:石油學(xué)報(石油加工)
  • 文件大?。?44kb
  • 論文作者:熊蓮,羅彩容,郭海軍,陳新德,陳勇
  • 作者單位:中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗室,中國科學(xué)院廣州能源研究所,中國科學(xué)院廣州分院
  • 更新時(shí)間:2020-10-02
  • 下載次數:次
論文簡(jiǎn)介

石油學(xué)報(石油加工)2012年6月ACTA PETROLEI SINICA (PE TROLEUM PROCESSING SECTION第28卷第3期文章編號:1001-8719(2012)03047006合成氣制備增塑劑醇的初步研究熊蓮2,羅彩容2,郭海軍2,陳新德址2,陳勇3(1,中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗室,廣東廣州510640;中國科學(xué)院廣州能源研究所,廣東廣州510640;3.中國科學(xué)院廣州分院,廣東廣州,510640)摘要:采用熱重差熱分析( TG-DTG)、X射線(xiàn)衍射(XRD)、場(chǎng)發(fā)射掃描電鏡( FE-SEM)手段對 Cu-Fe-Co/SO2催化劑進(jìn)行表征,將 Cu-Fe-Co/SO2用于催化合成氣制備增塑劑酶的反應,考察了不同工藝條件對總醇時(shí)空收率、增塑劑醇分布及CO轉化率的影響。結果表明,Cu、Fe、Co3種活性組分在SO2載體上分散均勻,的孔隙豐富,孔道結構牢固,利于增塑劑醇合成反應的進(jìn)行,隨著(zhù)反應溫度的升高,增塑劑醇質(zhì)量分數逐漸降低總醇時(shí)空收率呈現先上升后下降的趨勢;反應壓力增加,總醇時(shí)空收率增加,CO轉化率緩慢上升,但幅度很小,增塑劑醇質(zhì)量分數變化很小;當液時(shí)空速(GHSV)在3000~8000h-1范圍內增加時(shí),總醇時(shí)空收率增加,但CO轉化率降低,增塑劑醇質(zhì)量分數變化不明顯。當T=623K、p=5,5MPa,GHSV=6000h-時(shí),隨著(zhù)合成氣中H2體積分數的增加,總醇時(shí)空收率先升高后降低,增塑劑醇質(zhì)量分數降低;V(H2)/V(CO)=1時(shí),總醇時(shí)空收率最高為260.79g/(kg·h),增塑劑醇質(zhì)量分數為28.79%關(guān)鍵詞:增塑劑醇;合成氣;CO加氫; Cu-Fe-Co基催化劑中圖分類(lèi)號:O643文獻標識碼:Adoi:10.3969/isn.1001-8719.2012.03019Study on the Synthesis of Plasticizer Alcohols From SyngasXIONG Lian, LUO Cairong", GUO Haijun"2,CHEN Xinde., CHEN Yong(I. Key Laboratory of Renewable Energy and Natural Gas Hydrate, Chinese Academy of Sciences, Guangzhou 510640, China:uangzhou Institute of Energy Comversion, Chinese Academy of Sciences, Guangzhou 510640, china;3. Guang zhou Branch of Chinese Academy of Sciences, Guangzhou 510640, ChiAbstract: A prepared CurFe-Co/ SiO, catalyst was characterized by TG-DTG, XRD and FE-SEMand used to catalyze the synthesis of plasticizer alcohols. The effects of different process conditionson synthesis of plasticizer alcohols from syngas were investigated, which were judged by the timeand space yield of total alcohols, the distributions of plasticizer alcohols and CO conversion. Theresults indicated that the three active components Cu, Fe and Co in the catalyst were disperseduniformly on SiO2 carrier. The Cu-Fe-Co/SiO2 catalyst exhibited a wealthy and strong porestructure,which was conductive to synthesis of plasticizer alcohols. With the reaction temperatureincreasing,the mass fraction of plasticizer alcohols decreased gradually, and the time and spaceyield of total alcohols followed a trend of firstly increasing and then decreasing. The time and spaceyield of total alcohols and Co conversion increased slowly and slightly with the increase of reactionpressure. Little effect of reaction pressure appeared on distributions of plasticizer alcohols. WithGHSV increasing from 3000 h- to 8000 h", the time and space yield of total alcohols increased buthe CO conversion decreased, and the mass fraction of plasticizer alcohols收福日期:2011-05-17中國煤化工基金項目:中國科學(xué)院可再生能源與天然氣水合物重點(diǎn)實(shí)驗室基金項目(y107CNMHG)資助第一作者:熊蓮,女,助理研究員,從事有機發(fā)棄物高效利用、石油化工相關(guān)工藝的研究通訊聯(lián)系人:陳新德,男.正高級工程卿,博士,從事有機廢棄物高效利用、石油化工相關(guān)工藝的研究;Emal:cxd.cxd@hotmail.com第3期合成氣制備增塑劑醇的初步研究471significantly. It was proved that the time and space yield of total alcohols firstly increased thendecreased with the increase of hydrogen volume fraction, while reaction temperature, pressure andGHSV were 623 K, 5. 5 MPa and 6000 h respectively, under which and the value of V(H,)/v(Co)was 1, the time and space yield of total alcohols could reach to highest value of 260. 79 g/(kg.h)aswell as the mass fraction of plasticizer alcohols was 28. 79%Key words: plasticizer alcohols; syngas; CO hydrogenation: Cu-Fe-Co-based catalystC5~C醇是合成增塑劑及其它多種精細化工產(chǎn)的工藝條件。品的重要原料口,稱(chēng)為增塑劑醇,目前主要以?xún)认?實(shí)驗部分或丁烯為原料經(jīng)羰基合成反應制得。隨著(zhù)石油資源日益枯竭,研究和開(kāi)發(fā)增塑劑醇制備的新原料和新1.1原料與試劑工藝迫在眉睫。載體SiO2(Scr為350~450m2/g,30~100目合成氣主要成分為CO和H2,由合成氣一步法顆粒),工業(yè)級,南京合一化工有限公司產(chǎn)品;催化合成混合醇是國內外能源化工領(lǐng)域的研究熱點(diǎn),Cu(NO)2·3HO、Fe(NO)3·9HO、Co(NO)2·6H2O已經(jīng)開(kāi)發(fā)出多種相關(guān)的催化劑體系(24。但目前的研KNO,分析純,天津大茂試劑有限公司產(chǎn)品;去究主要集中在合成氣制備低碳混合醇方面,制備增離子水,自制塑劑醇的報道很少見(jiàn)。國內僅有焦桂萍等采用活1.2催化劑的制備性炭為載體制備了15%C0/AC1、15C0%/AC2和稱(chēng)取19gCu(NO4)2·3H2O、21.6gFe(NO3)3Co2La2Zr/AC催化劑,并考察了CO加氫反應制備9H2O、4.9gCo(NO3)2·6H2O、1.6gKNO3高碳混合醇的催化性能,但還沒(méi)有具有產(chǎn)業(yè)化可行15g去離子水置于200mL燒杯中,完全溶解后加性的研究成果人20gSO2,室溫下浸漬3~10h,經(jīng)393K烘干增塑劑醇的合成涉及C—_O鍵解離吸附、C—O得到催化劑前軀體,于空氣氣氛673K焙燒4h,粉鍵非解離吸附、C—C鍵形成、碳鏈增長(cháng)、水煤氣碎過(guò)篩,取60~80目顆粒,即得 Cu-Fe-Co/SiO2催變換反應以及加氫反應等復雜過(guò)程,相對合成低碳化劑。醇來(lái)說(shuō),必須考慮各組分間的相互作用和協(xié)同效應1.3催化劑活性測試才能解決催化反應機理中的碳鏈增長(cháng)問(wèn)題,也因此在內徑為8mm的不銹鋼固定床反應器上進(jìn)行合成增塑劑醇的催化劑應由多組分構成,包括主活CO加氫反應,用以考察Cu-FeCo/SiO2催化劑活性組分、載體或助劑。催化劑的主活性組分以其性。催化劑裝填量4mL。反應前,催化劑在T=特有的化學(xué)性質(zhì)對催化反應過(guò)程的活性和選擇性起673K、p=1.5MPa、GHSV=2000h-1、H2氣氛決定性的作用0。如Cu是合成甲醇的活性成分,中活化8h。降溫至100℃以下,調節不同的反應溫有利于CO的非解離吸附;Co或Fe組分有利于CO度、壓力、GHsv及V(H2)/v(CO),進(jìn)行連續反的解離吸附,促使單碳中間體CH-*的形成,使應。產(chǎn)物經(jīng)冷阱氣液分離,尾氣每2h通過(guò)采樣閥高活性狀態(tài)的單碳中間體相互結合,形成C—C鍵,導入日本島津GC20B-1氣相色譜測定其組成(載氣實(shí)現碳鏈增長(cháng);Co具有較優(yōu)的碳鏈增長(cháng)和抗積碳性為Ar,填充柱,TCD檢測器)。反應結束后收集液能,但價(jià)格高,可少量添加;Fe儲量豐富,價(jià)格低體,采用日本島津GC2010型氣相色譜測定其組成廉,也具有較優(yōu)的碳鏈增長(cháng)性能,可作為低成本主(毛細管色譜柱,FID檢測器)。要活性組分。催化劑中的助劑可使活性組分分散均1.4催化劑的表征勻,減少烴類(lèi)生成,提高醇的選擇性,例如堿金屬采用德國耐池 OMNISTAR的STA409C/PCK可作為催化劑助劑。載體起到分散作用,進(jìn)一步 PFEIFFER VACUUM分析儀進(jìn)行 TG-DTG分析,提高催化劑的催化性能在空V凵中國煤化工升溫至950K,進(jìn)為開(kāi)發(fā)一條新型的合成氣一步法制備增塑劑醇檢CNMHGpert Pro型X射線(xiàn)工藝,筆者研制了 Cu-Fe-Co基催化劑,表征了催衍射儀對催化劑樣品進(jìn)行XRD表征,CuKa(A=劑的結構性能,并考察了CO加氫合成增塑劑醇0.15418mm)輻射,石墨單色器,室溫,20為20-80,472石油學(xué)報(石油加工)第28卷掃描步長(cháng)0.02°。采用日本 Hitachi公司S4800型場(chǎng)可能是由于催化劑中組分間較強的協(xié)同作用所致,發(fā)射掃描電鏡對催化劑樣品進(jìn)行 FE-SEM掃描,工正是催化劑中的Cu、Fe、Co這3種金屬物種的相作電壓2.5kV,工作電流94A?;プ饔?促進(jìn)了合成氣向增塑劑醇的轉化。2結果與討論CuO·Fe2O3*Co2O42.1 Cu-Fe-Co/SiO2催化劑的表征結果2.1.1 TG-DTG分析圖1為 Cu-Fe-Co/SiO2催化劑前軀體的DTG曲線(xiàn)。由圖1可知,對應DTG曲線(xiàn)4個(gè)較為明顯的峰形,TG曲線(xiàn)出現4個(gè)失重峰,依次對應于催化劑前軀體中Fe(NO3)3分解、Cu(NO3)2分解、Co(NO3)2分解和KNO3分解。由于KNO3無(wú)結20304050607080晶水且含量較低,因而780K的峰形較小,這與徐慧遠等2的研究結果一致。由于KNO3主要起分散作圖2加氫反應前后 Cu-Fe-Co/SO2催化劑的XRD譜用,分解后反而不利于其發(fā)揮作用,因此焙燒溫度要Fig 2 XRD patterns of Cu-Fe-Co/ SiO catalysts before and低于780K并高于660K(Co(NO3)2完全分解的溫after hydrogenation reaction(1)Before hydrogenation reaction; (2) After hydrogenation reaction度)。 Cu-Fe-Co/SiO2催化劑前軀體采用673K焙燒。2.1.3 FE-SEM分析圖3為加氫反應前后 Cu-Fe-Co/SiO2催化劑不同放大倍數的 FE-SEM照片。由圖3可見(jiàn),加氫反應前后,Cu-FeCo/SiO2催化劑孔隙結構均比較明引|占顯;加氫反應后催化劑表面分布一些白色點(diǎn)狀物,400K可能是金屬組分活化后產(chǎn)生的微晶,結合XRD表征結果可知,加氫反應前后催化劑發(fā)生了晶相變化。519K由圖3還可見(jiàn),加氫反應前 Cu-Fe-Co/SiO2催化劑的活性組分均勻分布在催化劑表面,內部有大量孔300400500600700800900TIK狀結構,在加氫反應后仍然得到了較好的保持,未圖1 CurFe-Co/SiO2催化劑前軀體的 TG-DTG曲線(xiàn)形成堵塞,說(shuō)明催化劑的孔道結構比較牢固。Fg1 TG-DTG patterns of CurFe-Co/SiO2 catalyst precursor2.2 CuFe-Co/SiO2催化劑催化合成氣制備增塑劑醇的工藝條件2.12XRD分析圖2為加氫反應前后 Cu-Fe-Co/SiO2催化劑的2.2.1反應溫度的影響表1為反應溫度對 Cu-Fe-Co/SiO2催化合成氣XRD譜。與標準圖譜庫比較可知,加氫反應前的Cu-Fe-Co/SO2催化劑XRD譜中,歸屬于aFe2O制備增塑劑醇反應的影響。由表1可見(jiàn),隨著(zhù)反應的特征衍射峰峰形較為彌散,CuO特征衍射峰較溫度升高,CO的轉化率增加,總醇時(shí)空收率呈先強,CoO特征衍射峰較弱,表明 Cu-Fe-Co/SiO2升商后降低的趨勢,在623K時(shí)達到最高;在53催化劑主要物相為aFe2O2和CuO,也存在少量623K范圍內,吸附在催化劑表面的分子未達到足CoO;與cuO的標準衍射峰相比,衍射角位置向以完全進(jìn)行反應的活化能,成磨反應受動(dòng)力學(xué)控制,高角度方向發(fā)生了不同程度的偏移,這可能是由于升高反應溫度利于反應正向進(jìn)行;當反應溫度高于幾種金屬組分間的相互作用引起的,這種相互作用623K時(shí),由于CO加氫反應是放熱反應,主要受也使Co、Fe組分更易均勻分布于載體表面,與徐熱力學(xué)限制,反應平衡不利于正向進(jìn)行,總醇時(shí)空杰等的結果類(lèi)似。加氫反應后 Cu-Fe-Co/SO2催收率中國煤化工降趨勢;可能是反化劑XRD譜中,顯示出歸屬于Cu、Fe和CoO物應溫CNMHG物種作用強度比Cu種的特征衍射峰,表明加氫反應過(guò)程中aFe2O3和物種低,成醇反應快而C—C/C=C鍵形成慢,導CuO被還原,而Co3O4的還原停留在CoO中間態(tài),致碳鏈增長(cháng)能力變差。第3期合成氣制備增塑劑醇的初步研究473圖3加反應前后 CuFeCo/SMO2催化劑不同放大倍的FSEM照片Fig 3 FE-SEM photos under different magnifications of CuFe-Co/SiO catalyst before and after hydrogenation reaction(a)Before hydrogenation reaction, 1000 times: (b) After hydrogenation reaction, 1000 times;(c)Before hydrogenation reaction, 5X10 times:(d) After hydrogenation reaction, 5X10 times褒1反應溫度(T對 ClEcO/SMO2催化合成氣制備增塑劑醇反應的影響Table 1 Effect of reaction temperature(T) on synthesis of plasticizer alcohols from syngas over CurFe-Co/SiO,Alcohol distribution, w/%T/Kx(CO)/%Y/(g·(kg·h)-1)C1-C421.3532.2963.1317.0510.699.010.060.0636.8771.9210.535.494.553.3432.8374.1310.395.153.902.732.041.6625.8780.42153.972.96152.0182.787.791.511.1587.435.791.851.0412.57653447.072.161.150.620.47Reaction conditions: GHSV=4000 h- P-5 5MPa: V(H2)/V(CO)=2.02.2.2反應壓力的影響考慮總醇時(shí)空收率及增塑劑醇質(zhì)量分數,反應壓力表2為反應壓力對 Cu-Fe-co/SO2催化合成氣為5.5MPa時(shí)較利于增塑劑醇制備。制備增塑劑醇反應的影響??梢钥闯?增加反應壓2.2.3液時(shí)空速的影響力,可以明顯地提高總醇時(shí)空收率,而C5+醇質(zhì)量表3為液時(shí)空速(GHSv)對 Cu-Fe-Co/SiO2催分數降低,CO轉化率則總體呈現微弱升高趨勢。合化合成氣制備增塑劑醇反應的影響。由表3可見(jiàn),成氣制備合成增塑劑醇反應是體積減小的過(guò)程,隨著(zhù)GHsV增加,使反應平衡正向移動(dòng),促進(jìn)產(chǎn)物增加反應壓力增加,吉布斯自由能減小,反應平衡正向移并抑制副反應的發(fā)生,總醇時(shí)空收率增大;但GHSv動(dòng),且反應壓力增加有利于 CurFe-Co/SO催化劑表增加縮短了催化劑與合成氣的接觸時(shí)間,使得CO轉面吸附H2和CO,但CO吸附增長(cháng)幅度比H2的小,化率降低;在兩種因素相互作用下,GHsV變化對合因此總醇時(shí)空收率升高但C+醇質(zhì)量分數減少。綜合成氣制備增塑劑醇質(zhì)量分數影響較小。表2反應壓力(p)對 CtFe-Co/SMO2催化合成氣制備增塑劑醇反應的影響Table 2 Effect of reaction pressure( p) on synthesis of plasticizer alcohols from syngas over Cur-FeCo/SiOAlcohol distribution, w/%P/MPa r(CO)/% Y/(g(kg. h)-1)52.723.152.1621.12中國煤化工1.3620.1679152.017.793.34CNMHG1.081.226.553.96163.752.70YHS3.68Reaction conditions: GHSV=4000 h-I, T=623 K, V(H:)/V(CO)=2.0474石油學(xué)報(石油加工)第28卷表3液時(shí)空速(GHSⅤ)對cu-FeCo/SlO2催化合成氣制備增塑劑醇反應的影響Table 3 Effect of GHSV on synthesis of plasticizer alcohols from syngas over CurFe-Co/Sio,GHSV/x(CO)/%Y/(g,(kg,h)-1)69.5278,1310.265.190.382.6121.873.341.1553.36159.6579.914,152.911.421.101.5780047.21216,1420.55Reaction conditions: T= Ki P=5. 5 MPa; V(H; )/V(CO)=2. 02.2.4V(H2)/V(CO)的影響v(H2)/V(CO)偏小時(shí),CO占據大部分活性位點(diǎn)由表3可知,GHSV=6000h-時(shí)總醇的時(shí)空C—O/C—C鍵容易形成,CO轉化率高且碳鏈增長(cháng)收率以及C5+醇質(zhì)量分數較高,后續實(shí)驗以GHsV快;H2含量少則較難吸附到活性表面,易使解離6000h作為反應條件之一。表4為V(H2)/(CO)C-OCC中的碳覆蓋在催化劑孔道結構上而導致對 Cu-Fe-Co/SiO2催化合成氣制備增塑劑醇反應的積碳,降低催化劑活性;當合成氣中V(H2)影響。由表4可見(jiàn),隨著(zhù)V(H2)/v(CO從0.5增V(CO偏大時(shí),H2占據較多活性位,加氫成醇較至2,總醇時(shí)空收率呈現先增長(cháng)后降低的趨勢,C3+容易,碳鏈增長(cháng)困難,但催化劑不易積碳、活性穩醇質(zhì)量分數及CO轉化率呈遞減趨勢;當V(H2)/定??紤]到總醇時(shí)空收率以及C+醇質(zhì)量分數,v(CO)=1時(shí),總醇時(shí)空收率最高。當合成氣中V(H2)/V(CO)=1為制備增塑劑醇較優(yōu)的條件。表4v(H)/v(CO)對 Ce-Fe-Co/SiO催化合成氣制備增塑劑醇反應的影響Table 4 Effect of V(H, )/v(CO)on synthesis of plasticizer alcohols from syngas over Cu-Fe-Co/SiO,V(H,)/Alcohol distribution, w/%x(CO)/%Y/(g.(kg.h)-1)Cr-Ce63.8115.836.643.402.439536.1912.125.81235.9675.0310.745.033.542.048.5172.7278.954.361.32Reaction conditions: GHSV-6000 h-Ii A=5. 5 MPa; T=623 K260.79g/(kg.h),C+醇質(zhì)量分數達28.79%。3結論筆者認為,可以對本催化劑進(jìn)行改進(jìn),以提高(1) Cu-Fe-Co/SiO2催化劑的活性中心分布時(shí)空收率和C3+醇選擇性,如調整Cu、Fe、Co3種勻,孔道結構牢固,利于催化合成氣制備增塑劑醇組分間的比例使組分分布合理,各級反應速率相匹的反應。配;調整催化劑制備方法使其具有更好的物性和結(2) Cu-Fe-Co/sO2催化劑用于增塑劑醇合成,構等。在T=623K、p=5.5MPa時(shí),反應效果較好;隨考文獻GHsⅴ在3000~8000hˉ增加,總薛時(shí)空收率增大,CO轉化率降低,增塑劑醇質(zhì)量分數變化較小中國煤化立化江科技市場(chǎng)(3)T=623 K, p=5.5 MPa, GHSV=CN G Chem Tech market6000 h-, V(H,)V(CO)=1 af, Cu-Fe-Co/SiO催化合成氣制備增塑劑醇反應的總醇時(shí)空收率達到[2]李德寶,馬玉剛,齊會(huì )杰,等,CO加氫合成低碳混合第3期合成氣制備增塑劑醇的初步研究醇催化體系研究新進(jìn)展[J.化學(xué)進(jìn)展,2004,16(4)alcohol synthesis[J]. Catal Rev, 1991, 33(1):109-168584-592.(LI Debao, MA Yugang, QI Huijie, et al. [8] MAHDAVI V, PEYROVI M H, ISLAMI M, et alProgress in synthesis of mixed alcohols from COSynthesis of higher alcohols from syngas overhydrogenation[J]. Prog Chem, 2004, 16(4): 584-592.)Cu-Co2O,/ZnO, Al2 O, catalyst [JJ. Appl Catal A:3]士麗敏,儲偉,劉增超.合成氣制低碳醇用催化劑的研General,2005,281:259265究進(jìn)展[冂].化工進(jìn)展,2011,30(1):162-165.(SH1[9] NGUYENT T, HOU A, SERGE K, CharacterizationLimin. CHU Wei. LIU Zengchao, Research progress ofand reactivity of nanoscale La(Co, Cu)O, perovskiteynthesis fromanalyst precursors for CO hydrogenation[J].J SolidChem Ind Eng Prog. 2011, 30(1): 162-165.)State Chem,2008,181:2006-2019[4]定明月,李凱,李宇萍,等,費托組元改性的低碳混合[10] ANIL K G, EDWIN L K, JEAN B C,eal. A kinetic醇催化劑研究進(jìn)展[].化工進(jìn)展,2010,29:142-147model for the synthesis of high-molecular-weight(DING Mingyue, LI Kai, LI Yuping, et al. Advance inalcohols over a sulfided Co-K-Mo/C catalyst [J]. Indmodified F-T synthesis catalyst for higher alcoholsEng Chem Res,1998,37(6):2107-2115synthesisLJJ. Chem Ind Eng Prog, 2010, 29, 142-147.) [11] KOUACHI K, LAFAYE G, ESPECEL C. et al. Effects「5]焦桂萍,丁云杰,朱何俊,等,活性炭負載鈷基催化劑of support and metal loading on the characteristics of (上合成氣制混合醇[J].催化學(xué)報,2009,30(8):825based catalysts for selective hydrogenation of citral[j]. J829.(JIAO Guiping, DING Yunjie, ZHU Hejun, et aLMol Catal A-Chem, 2008, 280. 52-60.Synthesis of linear mixed high alcohols from syngas over[12]徐黧遠,儲偉,周俊,CO加氫合成低堿醇用CuCo/ctivated carbon-supported Co-Based catalystsLJ]. Chin JSiO催化劑的反應性能研究[J].工業(yè)催化,2008,16Cata,2009,30(8):825-829.)(10): 105-109. (XU Huiyuan, CHU Wei, ZHOU Jun.[6]焦桂萍,丁云杰,朱何俊,等,還原溫度對Co/1a/Zr/Catalytic behaviors of CuCo/SiO catalyst for hydrogenationAC催化劑合成氣制高碳混合醇性能的影響[冂.催化學(xué)of Co to lower alcohols[J]. Ind Catal, 2008, 16(10):dR, 2009, 30(2):92-94. ( JIAO Guiping, DING105-109.)Yunjie, ZHU Hejun,et,al. Effect of the reduction[13]徐杰,楊貫羽,辛勤,等,合成醇用負載型銅基催化劑temperature of CorLa-Zr/AC on the synthesis of higher的表征[J].催化學(xué)報19(3):206-209.(XUalcohols from syngas[J]. Chin J Catal, 2009, 30(2).Jie, YANG Guanyu, XIN Qin, et al. Characterization of92-94.)supported copper based catalyst for synthesis of alcohols[7] FORZATTI P, TRONCONI E, PASQUON L. Higher[J]. Chin J Catal,1998,19(3);206209.)中國煤化工CNMHG

論文截圖
版權:如無(wú)特殊注明,文章轉載自網(wǎng)絡(luò ),侵權請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習使用,務(wù)必24小時(shí)內刪除。
欧美AAAAAA级午夜福利_国产福利写真片视频在线_91香蕉国产观看免费人人_莉莉精品国产免费手机影院