

EM算法研究與應用
- 期刊名字:計算機技術(shù)與發(fā)展
- 文件大?。?86kb
- 論文作者:王愛(ài)平,張功營(yíng),劉方
- 作者單位:安徽大學(xué)
- 更新時(shí)間:2020-06-12
- 下載次數:次
第19卷第9期計算機技術(shù)與發(fā)展Vol 19 No 9CoMPUTER TECHNOLOGY AND DEVELOPMENTSep.2009EM算法研究與應用王愛(ài)平,張功營(yíng),劉方(安徽大學(xué)計算智能與信號處理教育部重點(diǎn)實(shí)驗室,安徽合肥230039)摘要:引入了可處理缺失數據的EM算法。EM算法是一種迭代算法,每一次迭代都能保證似然函數值增加,并且收斂到一個(gè)局部極大值。對EM算法的基本原理和實(shí)施步驟進(jìn)行了分析。算法的命名,是因為算法的每一迭代包括兩步第步求期望( Expectation Step),稱(chēng)為E步;第二步求極大值( Maximization Step),稱(chēng)為M步。EM算法主要用來(lái)計算基于不完全數據的極大似然估計。在此基礎上把M算法融合到狀態(tài)空間模型的參數估計問(wèn)題。給出了基于 Kalman平滑和算法的線(xiàn)性狀態(tài)空間模型參數估計方法。關(guān)鍵詞EM算法;狀態(tài)空間模型; Kalman中圖分類(lèi)號:TP301.6獻標識碼:A文章編號:1673-629X(2009)09-0108-03Research and application of EM algorithmWANG Ai-ping, ZHANG Gong-ying, LIU Fang( Ministry of Education Key Lab. of Intelligent Computing Signal ProcessingAnhui University, Hefei 230039, China)Abstrac: Following the description of traditional maximum likelihood estimation methods and the discussions on their disadvantages. EMalgorithm is an iterative algorithm, every iteration to ensure that the likelihood function can be increased, and the oonvergenoe to a localaximA. Presents an EM algorithm that can be used to deal with missing data problems, where the details of the EM algorithm and its realization procedure have been analyzed. Algorithm named because each iterative algorithm includes two steps: the first step in seeking expectations( Expectation Step), known as the e step; the second step for maxima( Maximization Step), kIown as step-by-step M.EM algorithm used to calculate the principel based on incomplete data, maximum likelihood estimation. This is then followed by applyingthe proposed em algorithm to the parameter estimation of state pace models. The paper also presents the Kalman smoothing basedrameter estimation methods for linear state space modelsKey words: EM algorithm; state- space model; Kalman1EM算法及其應用間模型的參數估計問(wèn)題EM算法是一種迭代算法,每一次迭代都能保證(1)似然函數值增加,并且收斂到一個(gè)局部極大值1,2。y, Hrr, Ur(2)算法的命名是因為算法的每一迭代包括兩個(gè)步:第一其中初始狀態(tài)x0,隨機誤差項a和v為獨立高斯分步求期望( Expectation Step),稱(chēng)為E步;第二步求極大布,三者之間是相互獨立:xo~N(x00,P0),at計算基于不完全數據的極大似然估計要用來(lái)N0,Q),-iN0,R),E【u]=0,E[uxo]值( Maximization Step),稱(chēng)為M步。EM算法=0,E[ax0]=0。假設模型噪聲2狀態(tài)的初始條件都服從高斯2EM算法的狀態(tài)空間模型參數估計分布,即:下面推導基于 Kalman平滑和算法的狀態(tài)空間模p(ro| 8)=(2x)2 I Poro I-to(x0型參數估計方法6-10。給出一般形式的線(xiàn)性狀態(tài)空)P((3)收稿日期:2008-12-26;修回日期:200-03-24基金項目:國家自然科學(xué)基金項目(60472065)dH中國煤化工∞p}-號(CNMHG(4)作者簡(jiǎn)介:王愛(ài)平(1956-),女安徽合肥人,教授,主要從事計算機教學(xué)與研究。p(x!1x1,0)=(2)號1Qs-(x第9期王愛(ài)平等:EM算法研究與應用109Fx-1)Q1(x-Fx1-1)(5) HrT)+ HPurh,])則完全數據的似然也服從高斯分布,完全數據的(10)似然可以表示為:p(x0r,y16)=p(x010)Ⅱp(x1x1,4算法實(shí)施步驟8) p(y, I xp, o)(6)現在把應用EM算法進(jìn)行狀態(tài)空間模型參數因此,完全數據的對數似然等于:估計的實(shí)施步驟歸納如下:LnP(Io:T, y1:T I8)=1)對參數0={R,Q,F,H,x00,Pool進(jìn)行初始化In I Pono 1-4(xo-IoIo)Polo(xo-xouo)2)E步:根據:-1,執行卡爾曼濾波及平滑,計算吾Q=2x-Em)xB斯值3)M步:計算參數={R,Q,F,H,x0,P0新TInIr-1 2( -,x, yR-1( -, 3,的值;n+mN+ min(2r)4)重復參數直至收斂14。其中,N是樣本量,m是狀態(tài)變量的維度,n是觀(guān)測變5實(shí)驗仿真量的維度??紤]如下的普通線(xiàn)性高斯狀態(tài)1空間模型取3求解對數似然的期望的極大化根據EM算法基本原理,獲得以下式子y= HI t vr而狀態(tài)初值x0、噪聲干擾v2和v均被假設為高ELInp(Io: T, 1T I 0)]=-5hn I Pc斯分布,即:InIQ1-hnIR|(n+ m)N+mln(2x)xo -N(oo, Poro), w iid N(o, Q),v"iidtr(PoEL(xo-Ioio)(xo-Ioio)'J)N(0,R)其中參數實(shí)際取值為:F=0.9,H=0.2,Q=0.7-∑(QE[(x1-Fx-1)(x-Fx-1))R=0.2,狀態(tài)初始設置為x0~N(0,10)。1S(RE[(y-Hx)(y-Hx)1)(8)依據 Kalman濾波和平滑公式,然后聯(lián)合EM算法對模型參數日=|F,H,Rn,Qu}進(jìn)行估計EM算法迭代次數設置為400(當然選代次數設置越大,能得到更A=2(ur a P)好的估計結果)。程序運行結果θ=10.9835,0.2049,0.2107,0B=∑(x1xt1r+P-1r)683},仿真結果如圖1~3所示C=∑(x1rgx11r+P:-1r)這樣,完全數據的對數似然期望可以表示為:ELInt(T, yi:TIni QI-lI R I(2x)-ftr(POOEIGCoT -Io)(Ic中國煤化工Por)-2∑(QCNMHGFBFJ)tr([( -Hrr)(y圖1似然函教的期望的Q(日,-1)收斂性110計算機技術(shù)與發(fā)展第19卷用D]廣州暨南大學(xué),2007[2]張杰,陽(yáng)憲惠.多變量統計過(guò)程控制[M].北京:化工工業(yè)出版社,20[3]陳志國,劉文舉基于EM算法的極大似然參數估計探討J河南大學(xué)學(xué)報:自然科學(xué)版,2002,32(4):35-41[4]孫大飛, Dempster A P, Laird M,etl.MaxiSeries b,1997,39(1):1-38.[5] Meng X L, Rubin D B. Recent Extension to theEM algorithm[M]. Bayesian Statistics 4.Oord圖2參數F真實(shí)值(粗線(xiàn))和估計值[6]胡壽松,王執銓,胡維禮.最優(yōu)控制理論與系統[M].北京科學(xué)出版社,2005[7]郭雷,程代展,馮德興控制理論導論[M]北京:科學(xué)出版社,2005:1-1078 Andrieu C, Doucet A Online Expection-Maximization Type algorithms for Parameter Estimation inGeneral State Space Models[C]//in Proc. IEEE[s.L.]:[s.n.],2003:69-72.[9]賈沛璋朱征桃最優(yōu)估計及其應用[M]北京科學(xué)出版社,1994[10] Parzen E On the estimation of a probability densityfunction andmode [J]. annals of Mathematical圖3參數H的收效過(guò)程Statistics,1962,33:1065-1076從上面的仿真圖形可以看出,EM算法用于狀態(tài)[1]waAP, Wang H. Minimising entropy and mean tracking空間模型參數估計,其估計結果還是不錯的,可以為時(shí)control for affine nonlinear and non Gaussian dynamic變不同的參數模型估計提供很好的幫助。stochastic system[J]. IEE Proceedings Control Theory & Ap-plication,2005,151(4):405-520[12] Wang A P, Wang H, Tan J. Optimal Filtering for Multivari6結束語(yǔ)ble Stochastic System via residual Probability Density Func-針對傳統的極大似然參數估計方法在解決實(shí)際問(wèn)ion Shaping[c]//Proceedings of SICE 2005 Annual Confer-題時(shí)所存在的不足,引入了EM算法。討論了算法原ence.[sL]:[sn.],2005:215-219理和實(shí)施步驟,并把EM算法推廣到狀態(tài)空間模型的13]任光張均東時(shí)間序列狀態(tài)空間模型建模及應用(M參數估計問(wèn)題,然后推導了基于Kamn平滑和EM算大連:大連海事大學(xué)出版社,2000102-112法的狀態(tài)空間模型參數估計的過(guò)程,最后給出實(shí)驗仿14cuL. Wang H. Mininum entropy filtering for multivariatestochastic systems with non-Gaussian noises [J].IEEETransactions on Automatic Control, 2006, 51(4): 670-695[15]梁應敞張賢達李衍達,等非高斯相關(guān)噪聲中高斯信號參考文獻:的時(shí)延估計[門(mén)]電子科學(xué)學(xué)刊,1997,19(5):607-612[1]陳學(xué)華狀態(tài)空間模型理論與算法及其在金融計量中的應多史國計算機學(xué)會(huì )余我史《計算機技術(shù)與發(fā)展歡迎訂閱VLl中國煤化工CNMHG
-
C4烯烴制丙烯催化劑 2020-06-12
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-06-12
-
生物質(zhì)能的應用工程 2020-06-12
-
我國甲醇工業(yè)現狀 2020-06-12
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-06-12
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-06-12
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-06-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-06-12
-
甲醇制芳烴研究進(jìn)展 2020-06-12
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-06-12