線(xiàn)性熱彈性系統解的存在性 線(xiàn)性熱彈性系統解的存在性

線(xiàn)性熱彈性系統解的存在性

  • 期刊名字:河南科技
  • 文件大?。?06kb
  • 論文作者:王玲
  • 作者單位:江蘇省無(wú)錫交通高等職業(yè)學(xué)校
  • 更新時(shí)間:2020-06-12
  • 下載次數:次
論文簡(jiǎn)介

數理與化學(xué)研究1河南科技Joumal of Henan Science and Technology線(xiàn)性熱彈性系統解的存在性王玲(江蘇省無(wú)錫交通高等職業(yè)學(xué)校,江蘇無(wú)錫214000摘要:本文主要研究了一個(gè)細長(cháng)結構中的帶有扭矩的熱彈性方程,并且表明了當初始溫度足夠高,即溫差很小的時(shí)候,一個(gè)線(xiàn)性的熱彈性方程的初值問(wèn)題的解是存在的。關(guān)鍵詞:熱彈性方程;線(xiàn)性;存在中圖分類(lèi)號:0175文獻標識碼A文章編號:1003-5168(203)240183-01許多工程元件含有的空間維度比其他元件要少,他們稱(chēng)a(0)=Z0,z:(0)=Z1,中(0)=,4(0)=,(0)=B,(2.7)為細長(cháng)結構。竿,鏈子,電纜,繩子,光盤(pán)等都顯示出這些特征。上式對任意都成立在參考文獻1,2中這些特征有了很詳細的研究。通過(guò)查閱簡(jiǎn)單第二步:(能量估計)將(24)-(2.6式分別乘以(an)',(bn)的 Cosserat模型中的熱彈性結構理論,參考文獻1,2中作者找(c)局部積分,對k求和并將三個(gè)等式相加得到4Eo(t)+到了一個(gè)簡(jiǎn)單的熱彈性模型,用于概括 Cosserat模型中的經(jīng)典K結構關(guān)系在本文中筆者主要研究了一維熱彈性問(wèn)2(%1,2h=題中位移和扭轉距離,其中兩端固定在處。本文中,考慮初始溫度充分大,而溫度變化范圍較小時(shí)的情況,由此可將非線(xiàn)性熱所以4EO)=2(41,+2Pk,彈性系統轉化為線(xiàn)性熱彈性系統來(lái)考慮。本文主要研究的是以下線(xiàn)性熱彈性系統ED()≤E(0)=C(zP+Z:+8P元+1:+(,)PA Zg -EAZa+aEA62+21=0,(x,t)∈Dx(0,∞)由此可以得到Z(t),d"(t)在L([0,∞),HbQ)])中有界,第三步:假設(Z,φ,61)和(乙2,小,82)是初值問(wèn)題的兩個(gè)解xφ-Jxφ+arJ=0,(x,t)∈!×(0,∞)(2.2)mma2當Zo,d,b∈H()∩H(),Z∈H時(shí),熱彈性"C0-A+0Am0,(,)∈9(0.叫),系統存在唯一解,使得Z,d,6∈C(10,∞);Hb(Ω)∩H(Ω)∩(23)C(0,∞);H(Q),2∈L:([0,∞];Hb(Q)其中,Z是位移,φ是扭矩,θ是溫度,p是質(zhì)量密度k是導通過(guò)以上定理的證明,當初始溫度足夠高,即溫差很小的熱系數E是彈性模量C是熱容量,和是慣性張量,A是時(shí)候,一個(gè)線(xiàn)性熱彈性方程的解是存在的橫截面面積,ar是熱膨脹系數,ar是相對熱膨脹系數。參考文獻下面通過(guò)以下引理來(lái)證明上述熱彈性系統解的存在性。[l]D. Liu, D Q Gao, R Rosing, C.H. T. Wang,A Richardson, Finite引理1:若zeH(9),z∈U2(),∈Ho(a),中∈2 element formulation of slender structures with shear def(④),deL()則(21)-(2.3)存在唯一解(Z,中,6)滿(mǎn)足ZeC(, based on the Cosserat theor, International Journal of Solids and),H0(92)∩C(0,∞),L2(9),∈C([0.∞),H(9)nC(0, Structure.42007785-7802),L2(Ω),deC(0.∞),L()L?(0∞),H(9))[2]D Liu, D QGao, C H T Wang, Three dimensional nonlinear證明:這一引理的證明主要運用 Galerkin方法并將證明 dynamics of slender structures: Cosserat rod element approach分為三步。Intermational Joumal of Solids and Structure. 43(2006), 760-783第一步:假設函數a=01(x)(k=1,…)為光滑函數,a3] D QGao, D Liu, S.Preston, R W.Tucker, Evolutionary systems=1是H()中的正交基,{a}=1是L(9)中的正交基。foe slender thermomechanical structures, Global Intrigrability of令2()=∑d、()m1,()=∑b,(la,r()∑c() leld theones Novi-3020047-368(2. 4) problem, Math. Meth. Appl Sci, 26(2003), 1255-127/ thermoelastic4 HGao, Global attractor for the semilinear,其中Z(1),φ"(t),"(t)滿(mǎn)足AZn Or+EAZrorr-aEAOo +Z,o,r=0,130a+Jyforr-arJ3ea,r=0,(2.5)2a+ca,+.E2+a4叫血=,a6中國煤化工CNMHG

論文截圖
版權:如無(wú)特殊注明,文章轉載自網(wǎng)絡(luò ),侵權請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習使用,務(wù)必24小時(shí)內刪除。
欧美AAAAAA级午夜福利_国产福利写真片视频在线_91香蕉国产观看免费人人_莉莉精品国产免费手机影院