熱解炭 熱解炭

熱解炭

  • 期刊名字:炭素
  • 文件大?。?/li>
  • 論文作者:劉樹(shù)和,白朔,成會(huì )明
  • 作者單位:中國科學(xué)院金屬研究所
  • 更新時(shí)間:2020-03-24
  • 下載次數:次
論文簡(jiǎn)介

炭素14·CARBON總第121期文章編號:1001-898(2005)01-0014-10熱解炭劉樹(shù)和,白朔,成會(huì )明(中國科學(xué)院金屬研究所先進(jìn)炭材料研究部,沈陽(yáng)110016)摘要:主要介紹了熱解炭材料的制備工藝、結構表征、沉積機理和影響熱解炭制備的關(guān)鍵工藝參數,對各工藝參數之間的內在聯(lián)系進(jìn)行了分析,并對其結構表征、制備、沉積機理研究中的一些問(wèn)題提出了研究思路。關(guān)鍵詞:熱解炭;化學(xué)氣相沉積;制備;結構;沉積機理中圖分類(lèi)號:TB332文獻標識碼:APYROCARBONSLIU Shu-he, BAI Shuo, CHENG Hui-mingGroup of Advanced Carbon Material Research, Institute of Metal Research, ChineseAcademy of Science Shenyang 110016, China)Abstract The pyrocarbons prepared by chemical vapor deposition(CVD )are reviewed in this paper, whichmainly covers the application and development of this material, the synthesis technique, the influential fac-tors, the characterization of the structure of pyrocarbon, the deposition mechanisms involved in the pro-cess, the main problems existed in this field and their possible solving methodsKey words: Pyrocarbon; Chemical vapor deposition; Synthesis; Structure; Deposition Mechanism1前言各種不同結構和性能的熱解炭材料,作為結構和功能材料在航空航天、原子能、醫學(xué)、電子、機械、納米熱解炭( Pyrocarbons,Pe)是氣態(tài)碳氫化合物在材料等領(lǐng)域都得到了廣泛的應用熱基體表面通過(guò)脫氫作用而形成的炭材料。近50多國內外對熱解炭材料的制備工藝、結構和性能年來(lái),由于熱解炭材料在工業(yè)上有著(zhù)重要的應用,因方面進(jìn)行了大量的研究工作,取得了很多研究成果。此出現了大量的關(guān)于熱解炭的文獻報導口-。最初但在制備熱解炭沉積機理方面的基礎研究工作相對人們采用在流化床中化學(xué)氣相沉積( Chemical va-較少,雖然提出了很多種理論模型但一直沒(méi)有形成por Deposition,CVD)的方法,用熱解炭包覆核反應致性的看法。產(chǎn)生這一現象不僅由于實(shí)驗設計的堆燃料粒子用于核反應堆中。隨著(zhù)熱解炭材料的制復雜性,也由于沒(méi)有列出有效的工藝參數或列出了備工藝性能和結構等方面研究的逐步深入,發(fā)展出卻未進(jìn)行系統研究17日期:2004-10-18簡(jiǎn)介:劉樹(shù)和(1970-)男,吉林蛟河人,中國科學(xué)院金屬研究所博士研究生,主要從事熱解炭材料研究工作,E-mail;shiu@imr.ac.cn第1期劉樹(shù)和等熱解炭15由于熱解炭的性質(zhì)是由氣相中的化學(xué)反應和基可以歸納如下:體上的沉積過(guò)程決定的,因此研究中就有必要在各1.按反應空間的熱分布:熱壁式、冷壁式和溫種尺度(從宏觀(guān)到納米織構再到微觀(guān)結構)上對基壁式;體、沉積物和它們的界面進(jìn)行表征,確定氣相中的化2.按加熱方式:有感應加熱、電阻加熱、微波加學(xué)反應并弄清基體上的沉積機理。但在熱解炭的熱、激光CVD等離子CVD、自熱式CVD法等;研究中,由于實(shí)驗條件變化很大或未能準確定義實(shí)3按工作方式:連續式和間歇式驗條件,得到的數據非?;靵y,實(shí)驗結果之間及結果4.按反應空間的壓力:常壓法、負壓法;與對它們的解釋之間經(jīng)常產(chǎn)生明顯的矛盾。5按基體在反應空間的狀態(tài):固定床(基體不Bokros口于1969年比較明確地提出了控制熱解炭動(dòng)或繞著(zhù)其幾何中心軸轉動(dòng))、流動(dòng)床和轉動(dòng)床。轉沉積的關(guān)鍵工藝參數:動(dòng)床工藝是20世紀80年代中期由Jai- Young Lee碳氫化合物氣體(碳源);等人-12研究開(kāi)發(fā)的一種沉積低溫各向同性熱解熱解溫度和壓力;炭的制備工藝停留時(shí)間r6.按原料氣流方向:單向沉積—原料氣體從反應器的幾何學(xué)(基體表面面積與氣體自由體反應器一側進(jìn)入,從另一側流出;變向沉積—這是積之比,As/VR)。Yun- Yao li等6所采用的一種修正的化學(xué)氣向通過(guò)控制關(guān)鍵工藝參數能夠制備出不同結構和沉積裝置,這種裝置可改變進(jìn)出系統的氣體的流向,性能的熱解炭材料。同時(shí)通過(guò)對這些工藝參數的系適用于長(cháng)的基體上的均勻被膜統研究,可以進(jìn)一步闡明熱解炭材料的沉積機理。但幾種典型的熱解炭材料的制備方法如下:各向是這些參數雖然是相對獨立的,它們之間又有著(zhù)緊同性熱解炭(IPc)利用流化床或轉動(dòng)床,常壓法、熱密的內在聯(lián)系,需要進(jìn)一步的研究和總結。壁式制備;熱解石墨釆用固定床,負壓法制備;炭/炭本文對熱解炭材料的制備工藝、結構表征、沉積復合材料采用的形式較多,主要有:等溫法、熱梯機理和關(guān)鍵工藝參數進(jìn)行介紹并對各工藝參數之度法、壓差法、強制氣流熱梯度法(FCⅤD)、脈沖法、間的內在聯(lián)系進(jìn)行分析,提出了目前熱解炭材料在等離子輔助CVD法( PACVD)、激光CVD法制備、表征、沉積機理研究中仍存在的問(wèn)題及其研究(LCVD)、液氣相CVD法、自熱式CVD法、快速定思路。向擴散法(RDD)等2制備工藝3織構和結構表征熱解炭的制備方法是CVD方法,沉積溫度可3.1光學(xué)顯微鏡方法以在很大的溫度范圍內變化(800℃~2000℃)。制熱解炭材料最初是采用正交偏光顯微鏡進(jìn)行定備所用的碳源通常是甲烷,也可以使用丙烷、乙烷、性的研究。最先把不同的熱解炭微結構進(jìn)行劃分的乙烯、丙烯、乙炔、苯、甲苯等碳氫化合物為碳源。是Gray和 Cathcart等印,他們定義了三種類(lèi)型的沉積基體可以是石墨、氮化硼或氧化鋁等無(wú)孔基體,微結構:1光學(xué)各向同性(無(wú)任何生長(cháng)特征和光學(xué)也可以采用氈制品和各種各樣的預制體等多孔基反射系數);2.層狀;3柱狀或粒狀。 Bokros將流體。為了控制制備各種性能的熱解炭材料,人們采取化床中形成的粒狀和柱狀結構的熱解炭定義為:微了多種多樣的制備方法。結構中可見(jiàn)到具有明顯的顆粒的沉積物,當顆粒較制備熱解炭涂層、坩鍋、塊體材料等主要采用三小且幾乎隨機取向時(shí),叫做“粒狀”;當顆粒較大且隨種制備方法固定床流化床滾動(dòng)床制備熱解炭與生長(cháng)方向取向更好時(shí),叫做“柱狀”。多孔基體復合材料主要采用化學(xué)氣相滲方法Pierson、 Lieberman等在1973~1975年將熱解Chemical Vapor Infiltration,CVI),通過(guò)熱梯度或炭更清楚地劃分三類(lèi)5-1壓力梯度(FCVI)的擴散作用,或通過(guò)脈沖作用(1)粗糙層狀熱解炭(RLPc):光學(xué)上各向異·1605年種各樣的生長(cháng)錐特征(柱狀織構),這些生長(cháng)錐產(chǎn)生斜引起的取向誤差信息。于基體或沉積物上(再生的織構)。消光十字(Mal-002LF具有取向區域的精確局域化的優(yōu)點(diǎn)。觀(guān)tese cross)表明沉積物同心地定向于顆?;蚶w維察表明:一些SLPc是由扁平的孔形成的,而其上。由于錐強烈破壞了十字,因此RLPc外貌粗糙;他SLP是波浪織構組成的。(2)光滑層狀熱解炭(SLPc):在光學(xué)上也是各002LF也可以獲得另外一些晶體學(xué)數據,用于向異性的但具有較低的相位移這種結構也相應于熱解炭的表征10-2同心沉積物,但沒(méi)有生長(cháng)錐形成,消光十字光滑。Pollmann3利用透射電鏡(TEM)觀(guān)察到熱解(3)各向同性熱解炭(IPe):光學(xué)上各向同性,相炭的三種取向結構:鑲嵌體、纏結體和層狀組織。位移是零。3.3衍射技術(shù)實(shí)際上,SLPc是一種中間結構,可具有介于3.3.1X-射線(xiàn)衍射RLPc和IPc之間的任何相位移值。X射線(xiàn)衍射20可以獲得有關(guān)石墨片層取向誤光學(xué)各向異性用物體的相位移8表述,人們用差的更精確的數據由于需要大量的實(shí)驗,目前只有Newton圖表來(lái)估價(jià)相位移。8和石墨片層取向誤流化床制備的熱解炭得到了一定的研究數據證實(shí),差(因傾斜和扭曲所引起的取向誤差)有著(zhù)緊密關(guān)最大的光學(xué)各向異性對應于最小的取向誤差。系根據取向誤差精確的測量8是劃分任何炭材料332選區電子衍射(SAD)(包括Pc)的一種方法由于用消光角表征熱解炭的織構還有一些令人另一個(gè)描述熱解炭結構的參數是與反射率數據不滿(mǎn)意的地方,因此為了分析熱解炭及相應的擇優(yōu)有關(guān)的消光角Ae的大小。各種熱解炭的微結構可取向度就需要同時(shí)用TEM與SAD這兩個(gè)方法來(lái)以定量地用消光角表征,隨著(zhù)擇優(yōu)取向和光學(xué)反射表征熱解炭。通過(guò)數字化的SAD圖象,可以直接的增加,所觀(guān)察到的微結構被定義為:ISO(Ae<測量方位角的強度,定量地表征擇優(yōu)取向。002衍射4°),DL(4°≤Ae<12),SL(12°≤Ae<18°)和RL斑的展開(kāi)角(AO),也稱(chēng)取向角(OA)14(Ae≥18°)。DL( dark laminar)是介于ISO和SL之Huttinger等提出了一個(gè)修正的條件,它是間的微結構。由于消光角可以連續的描述微結構的基于四種不同類(lèi)型的擇優(yōu)取向或者織構;各向同性變化,因此其引入是一個(gè)真正的進(jìn)步01炭(ISO):Ae=0°,OA=180°;低織構炭(LT):0°不過(guò),光學(xué)數據反映的是相對宏觀(guān)的尺度,它們Ae≤12°,180%≥OA≥80°;中織構炭(MT):12≤Ae是把大于或等于10m的區域的結果進(jìn)行平均,這≤18°,80°0A≥50°;高織構炭(HT):Ae>18°,OA種情況不能與所研究的區域的統計上的均勻取向誤≤50°。差進(jìn)行區分。這正是光學(xué)數據的缺陷所在。為了克34石墨化度服光學(xué)方法的這種缺陷,采用了在較小尺度上的其石墨化度是在炭材料中發(fā)現一對具有石墨順序他方法(例如各種形式的TEM成像)來(lái)表征熱解炭ABAB排列,并且d2=0.3354m的炭層的幾率的結構。(P1)3.2TEM成像在純亂層炭中,P1=0;在天然石墨中,P1=1。所3.2.1002暗場(chǎng)像有的炭材料都可通過(guò)高于2800C的熱處理達到P1002暗場(chǎng)像(002DF)可以評價(jià)任何炭材料中的的最大值P1的最大值取決于材料可能具有介于0石墨片層的傾斜和扭曲所引起的取向誤差,其最小和096之間的任何值,從非石墨化炭到石墨化炭穩分辨區域可以達到一微米。通過(guò)高分辨TEM002暗定地增加,包括部分石墨化炭(形成連續的中間系場(chǎng)像分析表明,一些SLPe是由扁平的孔組成列)5:2通過(guò)XRD測量熱解炭材料的P”,或者的口。通過(guò)SAD5來(lái)估價(jià)P1已成為表征熱解炭材料的3.2.2002晶格像一種手段。根據P1的分析結果,RLPc是可石墨002晶格像(002LF)是通過(guò)對圖像進(jìn)行一次傅化的,P1大=0.8;SLPe可部分石是化,P1最大值在立葉變換來(lái)測量石墨片層的扭曲引起的取向誤差。0.2~0.7之間變化;IPc是非石墨化的(P1=0)。例如,RLP給出士15°的取向誤差角,SLP給出3.5喇曼光譜個(gè)很7第1期劉樹(shù)和等熱解炭·17給出有價(jià)值的結構信息。在無(wú)定形或者無(wú)序炭中通炭。什么樣的條件導致液滴在不同相態(tài)中炭化的問(wèn)常會(huì )有兩個(gè)寬峰,一個(gè)大約在1580cm-處,這被稱(chēng)題需要具體研究。應關(guān)注液滴中的氫在沉積過(guò)程中為G峰,另一個(gè)大約在1350cm-1處,被稱(chēng)為D的存在形式及含量。峰2。G峰是sp2鍵合的強有力證據,而D峰則歸43固態(tài)粒子機理因于石墨微晶的無(wú)序模式81。隨著(zhù)無(wú)定形炭的有序在高濃度的反應氣體中,熱解炭的沉積速率高度的增加,D峰的強度增加并使G峰向上移動(dòng)。經(jīng)過(guò)反復的分解聚合反應,發(fā)生氣固相轉變,氣相中顯微激光喇曼光譜可以反應被分析對象表面及形核長(cháng)大生成大量球狀的固態(tài)粒子,這些固態(tài)粒子其以下約50nm范圍內的信息,既具備分析炭結構沉積到基體表面,然后通過(guò)粒子間低分子的炭化作的能力,又能夠進(jìn)行微區(現已小至直徑為1m的用粘接到一起,形成不規整的熱解炭結構區域)分析,很好的滿(mǎn)足了對復合材料中不同組元炭44粘滯小滴理論結構分析的要求。已有的研究給出了一些炭材料喇對前幾種機理進(jìn)行了綜合。反應氣體分子在基曼參數與微晶尺寸La、石墨化處理溫度等的關(guān)體表面或表面附近斷鍵而形成自由基,經(jīng)氣相形核系0-3。因此,可以對各種織構類(lèi)型的熱解炭運用及反復的脫氫/聚合反應生成芳香族化合物分子的喇曼光譜,分析其結構、測量其微晶尺寸和對其進(jìn)行混合物,混合物無(wú)固定的熔點(diǎn)或沸點(diǎn),聚集成粘滯小石墨化度表征。滴。小滴吸附于基體表面后浸潤、溶并,經(jīng)縮合成為4沉積機理稠環(huán)芳香族大分子。大分子進(jìn)一步脫氫,最終變?yōu)闊峤馓?。這種粘滯小滴泛指各種具有不同粘性的球狀碳氫化合物在進(jìn)入一定溫度的沉積爐后,發(fā)生聚集體。隨著(zhù)沉積條件的變化,粘滯小滴容并的程度熱分解、脫氫、縮合等化學(xué)反應,因此熱解炭的生成受其表面張力的控制,具有固態(tài)粒子或液滴的特征。過(guò)程非常復雜。目前提出了多種多樣的熱解炭沉積沉積較慢時(shí),生成粘度低的小滴,附到基體上后可充機理,但都是定性地進(jìn)行描述。文獻中提到的沉積機分的溶并,形成SL組織,如在此過(guò)程中有少數粘度理按其特征主要有分子沉積機理、固態(tài)粒子機高的小滴產(chǎn)生,則以此高粘度小滴形核并生長(cháng),形成理、液滴機理1、粘滯小滴機理[3、表面分解理SC(光滑柱狀)組織;沉積較快時(shí),形成粘度大的小[38]滴,近似于固態(tài)粒子,沉積后移動(dòng)能力差,散亂堆集4.1分子沉積機理成ISO結構;若條件適中,則可形成RL或RC(粗糙在低濃度的反應氣體中,熱解炭的沉積速率低。柱狀)組織。氣相中生成液態(tài)或固態(tài)的芳香族平面分子單元以及45表面分解理論(又稱(chēng)直接碰撞理論)少數的小球狀粒子,平面分子以球狀粒子為核心呈該理論認為,碳氫化合物分子碰撞到沉積表面圓錐形排列或與基體表面平行排列,形成致密的取上,直接分解而使碳粒生長(cháng),并不需要在空間預選形向度高的熱解炭。成某種中間產(chǎn)物或基團4.2液滴理論最近,Hu3根據基體表面吸附類(lèi)型把熱解炭劃碳氫化合物在氣相中的分壓超過(guò)其飽和蒸氣壓分為兩種不同的機制模型:(1)生長(cháng)機制熱解炭通過(guò)時(shí)就會(huì )生成液滴,液滴炭化后形成熱解炭。該機理涉在基面邊緣的活性位上分子物種的化學(xué)吸附而生及氣一液和液一固的兩次轉變。從氣相到液相的過(guò)長(cháng)。程中,根據氣相成核理論,假設液滴呈球形,氣液相2)成核機制,熱解炭通過(guò)基體表面上多環(huán)芳烴平衡時(shí),液滴的半徑與氣壓的關(guān)系滿(mǎn)足開(kāi)爾文公式。(PAHs)的物理吸附而沉積。高沉積速率是成核機氣體(或蒸氣)在一定的過(guò)飽和度下,當液滴大于臨制的特征。界半徑時(shí),其在熱力學(xué)上是穩定的,理論上就能不斷Huttinger{0)認為,熱解炭沉積可看作是氣相中長(cháng)大。溫度升高,液滴的臨界半徑減小,成核變得容均相反應和基體上的異相反應之間競爭的結果。前易,沉積速度加快。液一固相轉變中,該機理認為,液者提供了越來(lái)越重的物種,后者導致了表面活性位滴是大量碳氫化合物基團的聚集體轉變是炭化脫上對物種的吸附,這種吸附遵從一個(gè)簡(jiǎn)單的機理:如氫過(guò)程若液滴的炭化在氣相中進(jìn)行,則生成各向同果物種與活性位接觸就被化學(xué)吸附;否則,它就會(huì )18炭素2005年成機制出發(fā),提出了熱解炭沉積的粒子一填充物模在沉積中出現過(guò)飽和程度的大小來(lái)解釋。型,芳烴對應于分子物種,小的直線(xiàn)烴(乙炔作為主停留時(shí)間的長(cháng)短對熱解炭結構影響也很大,停要組分)對應于分子填充物。留時(shí)間可以理解為允許熱解發(fā)生的時(shí)間,其與氣體5工藝參數與熱解炭結構和性能的關(guān)流速密切相關(guān)。在反應器中,當沉積發(fā)生時(shí)沿反應管中基體長(cháng)度方向上,隨距離增加各處的停留時(shí)間系也在增加,因此各處空間物種的生成和消耗就不同,在Hu的模型中,兩種機理發(fā)生在不同的沉即沉積物種的性質(zhì)和數量就會(huì )發(fā)生變化,基體各處積參數下、對應于各種程度的氣相過(guò)飽和度。生長(cháng)機沉積的炭的結構和性能就會(huì )不同,2在一定的限制,對應于很低的過(guò)飽和度,低壓、短停留時(shí)間、低沉度內,增大停留時(shí)間相當于增大氣體飽和的程度積溫度和高[As/VR]比134241。成核機制,相應于很As/VR這一參數也會(huì )影響到熱解炭的沉積過(guò)高的過(guò)飽和,要求氣相中有PAHs的形成。這類(lèi)物程。如果As/VR大,就會(huì )降低熱解重質(zhì)大分子產(chǎn)物種的形成發(fā)生在高沉積溫度、高壓和較長(cháng)的停留時(shí)的飽和程度。很大的床層面積,會(huì )使分子碎片在基體間。在低壓(低過(guò)飽和)下,小的直線(xiàn)烴占支配地直接沉積成為主要的沉積過(guò)程,從而較少或者無(wú)位;在高壓(高過(guò)飽和)下,芳烴占支配地位42。因此法出現成核或凝聚為液滴的過(guò)程。因為成核或者凝分別在低和高過(guò)飽和度下,過(guò)量小的和大的烴物種聚成液滴需要分子碎片濃度超過(guò)它的飽和蒸氣壓導致了MT和LT炭的形成。而在中度過(guò)飽和下,由區。于芳烴和小的直線(xiàn)烴的比率合適,所以可形成最大影響熱解炭沉積的另外一個(gè)因素就是基體表面織構(HT)熱解炭?;钚晕坏臄盗颗c性質(zhì),以及沉積表面的狀態(tài)。研究表從以上對沉積機理的論述中可以看出,制備熱明{43基體表面活性位上的化學(xué)吸附與表面反應性解炭的工藝參數對熱解炭的生長(cháng)過(guò)程機理及熱解炭和氣化作用有關(guān)。 Huttinger認為40:氣體中產(chǎn)生的的結構有重大影響特定物沉積與否,取決于它能否與基體上的活性位然而,熱解炭的結構并不依賴(lài)于所用的碳氫化碰撞。因此在熱解炭沉積過(guò)程中,測定活性位面積合物的種類(lèi)在相同工藝條件下,由于碳氫化合物的(ASA)、活性位的表面密度A(A=ASA/TSA,穩定性不同,不可能制備出同一結構的熱解炭,但通TSA一總表面積)和性質(zhì)(即活性位的效率)是過(guò)調整工藝條件,即可沉積出結構相似的熱解很重要的由于基體材料不同,其表面的活性位的性炭5質(zhì)和數量就不同,在其上沉積出的熱解炭的結構就在熱解炭的沉積中,沉積溫度是CVD最敏感可能會(huì )有差異。有文獻口指出,纖維表面的納米粗糙的工藝參數。首先,對于同一碳氫化合物沉積溫度度能夠急劇地改變熱解炭的織構因此基體表面狀決定了熱解反應的活化能;其次,沉積溫度決定了凝態(tài)如粗糙度,表面空隙,雜質(zhì)等都影響沉積物的結成液滴的前驅體(即縮合而成的大分子)的飽和蒸氣構。當表面無(wú)雜質(zhì),光潔度高,則熱解炭結構較細,生壓,有些情況下差別很大,所以溫度對于沉積爐中炭長(cháng)較好;相反,表面粗糙,有雜質(zhì),則使熱解炭形成粗黑的生成及數量也有影響;最后,沉積溫度決定了生糙結構。張守陽(yáng)等研究表明,在石墨表面沉積熱成的(氣相中液滴上的或已沉積在基體上的)沉積單解炭時(shí),基體表面的粗糙度主要影響所形成的熱解元的表面活動(dòng)能力(重排性的難易),在這方面,炭的生長(cháng)錐的大小?;w表面以及正在生長(cháng)的沉積Kae和JeJH.[0都有過(guò)報道。這樣,在其他工藝物表面上的微小凸起,可以充當表面上的物理成核條件不變的情況下,變化沉積溫度沉積出的熱解炭劑(與成核點(diǎn)的曲率半徑有關(guān))的作用。的結構和性能都有差異,甚至可能完全不同。因此氣體的流動(dòng)方式(用雷諾數表征層流、湍流或者沉積溫度的選擇和控制,對于沉積出所期望結構的渦流狀態(tài))對熱解沉積物的結構也有著(zhù)影響熱解炭極為重要JH.Je等01提出的熱解炭沉積模式,強調了系統碳氫化合物占的體積濃度對熱解炭的沉積也有內氣流條件對生成各向同性熱解炭所起的重要作影響。在較低濃度下,生成層狀炭;在較高濃度下,可用。同樣,在 V De pauw等)的文章中,也指出基生成各向同性炭;但此體積濃度過(guò)大或者流量過(guò)大,體邊緣氣流的紊亂擾動(dòng)有利于沉積出低織構熱解第1期劉樹(shù)和等熱解炭·19大量研究表明,氫會(huì )抑制熱解炭沉積也會(huì )抑制能會(huì )減小炭黑形成的幾率。 Huttinger和 Verdes63炭黑的形成,但其機理還不明確。 Kinney等認則認為氫對熱解炭沉積的抑制作用與其在基體表面為:氫是通過(guò)對熱解反應中生成的自由基的競爭作的化學(xué)吸附有關(guān)。用來(lái)抑制炭生成的(如果沒(méi)有氫,這些自由基將會(huì )結Bokros口對不同結構熱解炭的沉積條件做了歸合并最終形成炭)。F. Kobayashi2等人認為加氫可納,見(jiàn)下表。表在流化床中沉積層狀、粒狀和各向同性炭Table Deposition layer form, grain form and isotropic carbon in sulphuration bed微結構沉積過(guò)程特點(diǎn)工藝條件低溫沉積的層狀結構平面狀縮合物在氣相中形成并直接沉在粒子表面低溫,中至高的碳氫化合物濃度,大的床層面積各向同性在氣相中出現過(guò)飽和;含氣顆粒形成并沉人熱解炭涂層長(cháng)接觸時(shí)間,小床層面積,高碳氫化合物濃度,低至中的溫度粒狀和柱狀當出現有序的晶體增長(cháng)的條件時(shí)高溫,低碳氫化合物分壓,小床層面積以上所訴內容,可用下圖簡(jiǎn)單概括。長(cháng)機制。因此,對于一定的基體材料和沉積溫度,碳氫化合物濃度、停留時(shí)間、As/VR和氣體的流動(dòng)方溫度沉積速率和效率式等參數之間存在著(zhù)緊密的內在聯(lián)系需要進(jìn)行探索,以便掌握控制制備熱解炭的最關(guān)鍵因素,進(jìn)一步氣體組成揭示其沉積機理。 Bokros等認為:對具有相似結構床層反應熱解炭結構:的熱解炭,可以在給定溫度下通過(guò)調節工藝條件以停留時(shí)間1各向異性度保持同樣涂層率的方法用任何碳氫化合物(只含碳、2密度氫)沉積出來(lái),因此在一定溫度下,沉積速率是決定3表觀(guān)微晶尺寸As/w4微結構熱解炭結構的決定性因素。而沉積速率的大小是由成核機制和生長(cháng)機制共同決定的,因此在沉積速率圖工藝參數變量、床層反應、沉積速率和相同的情況下,中間物種的種類(lèi)組成應當是相似的。沉積炭結構之間的關(guān)系綜上所述,對于一定材料的基體,溫度決定了熱解反Fig. Relations between the craft parameter應的活化能的大小,從而決定了氣相中最原始的中changes, the bed layer respond, the deposited間物種的種類(lèi)(性質(zhì))各中間物種飽和蒸氣壓的大speed and deposited carbon structure小及由最原始的物種生成各中間物種的活化能的大小,是一個(gè)熱力學(xué)條件;碳氫化合物濃度、停留時(shí)間、分析熱解炭的沉積過(guò)程可以發(fā)現,其實(shí)質(zhì)上是As/VR、氣體的流動(dòng)方式等參數影響的主要是中間由反應中間物種在基體表面的碰撞幾率和它們在氣物種在反應空間中的碰撞幾率,影響熱解炭的沉積相空間中的碰撞幾率的相對大小決定的,在沉積速率,是一個(gè)動(dòng)力學(xué)條件溫度不變的情況下,碳氫化合物的濃度越大,則中間總之,熱解炭的沉積是一個(gè)復雜的過(guò)程,涉及到物種在氣相空間碰撞幾率越大;而停留時(shí)間的適度許多復雜的因素但實(shí)質(zhì)上,這個(gè)過(guò)程就是一個(gè)碰撞增加,也會(huì )增大中間物種在氣相空間的碰撞幾率;同和反應(吸附)的過(guò)程。這有兩方面的含義:首先,熱樣,對于一定的基體材料,As/VR的適度減小,說(shuō)明解炭的沉積是氣相中的沉積物種和表面(沉積開(kāi)始,空間反應體積相對增大,氣相空間中的中間物種的是基體表面;隨著(zhù)沉積過(guò)程的進(jìn)行,變成了生成的沉碰撞幾率亦會(huì )增大;改變反應器中的氣流狀態(tài),使之積體的表面)的碰撞和吸附(物理吸附和化學(xué)吸附)從層流變?yōu)橥牧?如流化床中粒子所引起的擾流作過(guò)程。這取決于固體表面的吸附能同氣相里沉積物用等),也會(huì )增加氣相空間里中間物種之間的碰撞幾種的活性能的匹配與否(這是異相反應即取決于表率。反應過(guò)程中中間物種的碰撞幾率增加,有利于氣面的性質(zhì)一活性位的性質(zhì)和氣相里的沉積物種的性積物炭素2005年次,取決于氣相里中間物種的活性和它們之間碰撞多分解產(chǎn)物的成分、含量、存在狀態(tài)以及隨時(shí)間的變的幾率因為這決定了能否生成適于沉積的物種以化規律進(jìn)行較精確的測定,從而獲得大量較準確的及沉積物種的數量,是均相反應過(guò)程,涉及到氣相里熱力學(xué)和動(dòng)力學(xué)數據,用以論證或建立更基本更普具體的化學(xué)反應過(guò)程的進(jìn)行與否以及進(jìn)行的程度。適的沉積理論。因此,熱解炭的生成過(guò)程,既涉及到熱解反應的化學(xué)從能量的觀(guān)點(diǎn)來(lái)看,每個(gè)反應都有自身的反應熱力學(xué)因素,又涉及到化學(xué)動(dòng)力學(xué)因素。影響熱解炭激活能,對應于一定的反應溫度。在一定的沉積溫度的生成速率、結構和性能的所有工藝因素,必須從上范圍內,會(huì )有眾多的反應同時(shí)進(jìn)行,當反應進(jìn)入穩定述兩個(gè)方面進(jìn)行考慮,才能得到合理的解釋。階段后,存在著(zhù)主反應或主反應鏈。隨著(zhù)沉積過(guò)程的6存在的問(wèn)題和研究思路進(jìn)行,沉積工藝參數有可能變化,從而可能導致主反應的轉化,不同區域的主反應可能不同。理論上分析首先,在熱解炭的結構研究方面。目前為止,由沉積過(guò)程中,因沉積參數的改變,反應及轉化條件的CVD工藝制得的熱解炭組織除本文提到的幾種及變化,有利于對實(shí)驗結果作出合理的預測。其變體外,沒(méi)有更新的報道。然而,我們關(guān)于熱解炭最后,在材料的制備控制方面。盡可能的優(yōu)化沉組織的知識還有許多不完善的地方,熱解炭組織的積工藝,探索適宜的制備條件,制備出所要求的結構類(lèi)別還有待于進(jìn)一步表征,其性能也有待于進(jìn)一步和性能的熱解炭材料,已成為很重要的課題。在長(cháng)時(shí)量化。近十多年來(lái),已有無(wú)定形炭的新的結構模型提間沉積過(guò)程中,隨時(shí)間延長(cháng)爐內沉積環(huán)境會(huì )發(fā)生很出{,熱解炭中的各向同性炭也屬于亂層炭,可借大的變化,如何調整工藝參數以保證熱解炭材料結鑒這些模型進(jìn)行研究。 HRTEM是表征材料微觀(guān)結構均勻、性能一致就顯得尤為重要了。由于尾氣的成構的有力手段,但目前還沒(méi)有關(guān)于RL、SL和ISO分以及其中炭黑含量間接地反映了反應器內沉積情等各種熱解炭的微觀(guān)結構的分類(lèi)對比研究的報道,況。因此,可以通過(guò)對尾氣的分析研究,估計反應器建議采用這種方法對熱解炭材料進(jìn)行深入研究;內的沉積情況,來(lái)適當地調節沉積工藝條件以保證Raman光諧可以提供熱解炭材料的結構信息,判斷最佳沉積狀態(tài)。同時(shí),在制備大尺寸C/C復合材料其石墨化度,也是值得嘗試的一種新手段。及性質(zhì)均勻的塊體熱解炭材料時(shí),存在著(zhù)制備時(shí)間其次,在熱解炭的沉積機理研究方面。上述沉積長(cháng)、炭利用效率低等問(wèn)題。探索如何快速致密和沉機理中有些只是猜測的想法(如液滴理論)。由于實(shí)積提高炭沉積效率、降低生產(chǎn)成本,沉積出所要求驗條件和手段的限制,到目前為止,并沒(méi)有“液滴”的的熱解炭(復合)材料,將值得進(jìn)一步研究。實(shí)驗驗證。另外,如果“液滴”理論成立,那么是否可以把此機理下的熱解炭沉積同液相炭化中的中間7結論相理論聯(lián)系起來(lái)。同時(shí),為了研究沉積機理、控制制由于熱解炭材料在各領(lǐng)域的廣泛應用,人們不備熱炭解材料,有必要對某些模糊不清的工藝參數斷發(fā)展多種多樣的制備方法生產(chǎn)各種不同結構和性進(jìn)行細致明確的定義。例如,在A(yíng)s/VR的定義中,As能的熱解炭材料。通過(guò)光學(xué)顯微鏡、TEM、SAD、指的是床層面積,此面積是否包含反應器內壁的側 XRD Raman等多種分析手段對熱解炭材料的微觀(guān)面積?VR指的是凈空間體積(反應區的體積與基體結構進(jìn)行越來(lái)越細致、具體和準確研究和表征。根據的體積之差),這里反應區到底應該如何理解,是否熱解炭材料的沉積過(guò)程和微觀(guān)結構,人們提出了數就是沉積區?如果是沉積區,應如何定義?種沉積機理,雖然目前還沒(méi)有達成統一的共識,但對眾所周知,熱解炭沉積過(guò)程包括碳氫氣體的反熱解炭的沉積機理的認識有了很大的進(jìn)步。熱解炭應熱解、氣相或固相成核、炭化脫氫和晶粒生長(cháng)。沉積物可考慮為氣相均相反應和基體上的異相反應Lieberman和 Pierson等1510曾對反應中間氣體進(jìn)之間競爭的結果,并與表面活性的性質(zhì)和數量聯(lián)系行過(guò)研究,并定量地把熱解炭的結構與氣相中C2H2起來(lái)。和CH6的摩爾比R聯(lián)系在一起。也有一些關(guān)于氣沉積溫度決定了熱解反應的活化能的大小,是相中間物的成分分析的報道口但是,目前沉積過(guò)程個(gè)熱力學(xué)條件;碳氫化合物濃度、停留時(shí)間、As/的細節還不完全清楚,還不能明確回答這一問(wèn)題:哪VR、氣體的流動(dòng)方式等參數影響的主要是中間物種第1期劉樹(shù)和等熱解炭·21·是一個(gè)動(dòng)力學(xué)條件對這些工藝參數的深入研究,對cal properties of isotropic pyrolytic carbon控制制備熱解炭材料有著(zhù)重要的意義deposited in a tumbling bed [J]. Carbon在熱解炭的結構、沉積機理和制備控制方面還1985,23(5):487-492.存在著(zhù)很多需要進(jìn)一步深入研究的問(wèn)題,對這些問(wèn)[12]JeJH,lai- Young Lee.. A Study on the de題的研究和解決將有利于熱解炭材料的生產(chǎn)和拓展position of pyrolytic carbons from hydrocar其應用領(lǐng)域。bons[J]. Carbon,1984,22(6):563-570.參考文獻:[13]程永宏,羅瑞盈,王天民·化學(xué)氣相沉積[1] Bokros JC. In: Walker Jr. PL, editor [J](CVD)炭/炭復合材料(C/C)研究現狀[]Chemistry and physics of carbon, vol. 5.炭素技術(shù),2002,(5):26-32.New York: Dekker, 1969, pp. 1-118[14 B Reznik, K J Huttinger. On the termino-[2] Kotlensky WV In Walker Jr PL, Throwerlogy for pyrolytic carbon[J]. Carbon, 2002PA, editors [J]. Chemistry and physics of40:621—624carbon, vol 9. New York: Dekker, 1973, pp[15] Lieberman ML, Pierson HO. Effect of gas174-273phase conditions on resultant matrix pyro-[3] Bokros JC, Lagrange LD, Schoen FJ. Incarbons in carbon/carbon composites [J]Walker Jr. PL, Thrower PA, editors [J].Carbon,1974,12(3):233-241.Chemistry and physics of carbon, vol 9. [16] Pierson HO, Lieberman ML. The chemicalNew York: Dekker, 1973, pp. 103-171.vapor deposition of carbon on carbon fiber[4 Fitzer E. The future of carbon-carbon com-[J]. Carbon,1975,13(3):159-166posites[U]. Carbon1987;2(2):163-190[17] Granoff B, Pierson HO, Schuster DM. The[5]楊寶林饒永生,低溫各向同性熱解炭的沉積effect of chemical-vapor-deposition con-工藝[]新型炭材料,1991,(3):147-154ditions on the properties of carbon-carbon[6] Yuan-Yao Li, Tsuyoshi Nomura et al. Fab-composites [J]. Carbon, 1973, 11(3):177-rication of carbon coated ceramic membranes180.by pyrolysis of methane using a modified [18] Goma J, Oberlin A Characterization of lowchemical vapor deposition apparatus [J].temperature pyrocarbons obtained by densi-Journal of Membrane Science 197(2002)23fication of porous substrates [J]. Carbon251986,24(2):135-142[7] Ober lin A, Pyrocarbons(review)[J]. Carbon [19] Bourrat X, Trouv: B, Limousin G, Vignoles40(2002)7-24G, Doux F. Pyrocarbon anisotropy as mea-[8] Tessner PA In: Thrower PA, editor [J]sured by electron diffraction and polarizedChemistry and physies of carbon, vol. 19light []] J Mater Res, 2000, 15(1): 92Nwe York: Dekker, 1984, pp. 65-161101[9] Je JH,Jai-Young Lee A study on the depo- [20] Dupel P, Bourrat X, Pailler R Structure ofsition rate of pyrolytic carbon in a tumblingpyrocarbon infiltrated by pulse-CVI[J]bed [J]. Journal of Materials Science. 1985Carbon,1995,33(9):1193-1204.20:643-647[21] Rouzaud JN, Oberlin A. Structure, micre[10]. Jai-Young Lee, Je JH et al. A Study of thetexture,and optical properties of an-properties of pyrolytic carbons depositedthracene and saccharose -based carbonfrom propane in a tumbling and stationary[J]. Carbon,1989,27():517-529bed between 900 and 1 230C[J]. Carbon, [22] Bourrat X Electrically conductive grades of1983,21:523-533.arbon black: structure and properties [J]22·2005年[23] Feron O, Langlais F, Naslain R, Thebault J.(6):665-673.On kinetic and microstructural transitions in [36] Jung HJ, Jai- Young Lee. How is pyrolyticthe CVd of pyrocarbon from propane [J].carbon formed? Transmission electronCarbon,1999,37(9):1343-1353crographs which can explain the change of[24] Bacon GE. A metnod for determining theits density with deposition temperature[ J]degrec of orientation of graphite[J]. J ApplCarbon,1984,22(3):317-319.Chem,1956,6(4):477-483.[37]石榮,熱解炭基炭/炭復合材料的組織與力[25] Oberlin A. In: Thrower PA, editor [J].學(xué)性質(zhì)研究[D]西北工業(yè)大學(xué)博士學(xué)位論文,199New York: Dekker, 1989, pp 1-143.[38] IT. A. TecHep, IL. A.H. CCCP, Tom 87, 821[26] Oberlin A, Bonnamy S, Rouxhet PG. In:(1952)Thrower PA, Radovic LR, editors [J]. [39] Hu ZJ, Huttinger KJ. Mechanisms of carbonChemistry and physics of carbon, vol. 26deposition-a kinetic approach[J]. CarbonNew York: Dekker, 1999, pp. 1-148.2002,40(4):624-628[27] Dasgupta K, Sathiyamoorthy D Disordered [40] Benzinger W, Huttinger KJ. Chemical vaporcarbons preparation, structure, andinfiltration of pyrocarbon-II. The influencecharacterization [J]. Materials Science andof increasing methane partial pressure atTechnology.2003,19:995-1002constant total pressure on infiltration rate28] Robertson J. amorphaous carbon[J]. Adand degree of pore filling. [J]Carbon, 1998Phys.,1986,35:317—37436(7-8):1033-1043[29] Wada N, Gaczi P], Solin SA. "Diamon- [41] G L Dong, K.J. Huttinger. Consideration oflike"3-fold coordinated amorphous carbonreaction mechanisms leading to pyrolyticIJ]. J NON-Cryst. Solids, 1980, 35:543-carbon of different textures [J]. Carbon 40548.(2002)2515-2528.[30] Nemanich R J, Solin S A First-and second [42] Zhang WG, Hu ZJ, Huttinger KJ. Chemicalorder raman scattering from finite-sizevapor infiltration of carbon fiber felt: optr-crystals of graphite [J]. Phys. Rev.,1979mization of densification and carbon mi-B20(2):392-401.crostructure[J]. Carbon2002, 40(14): 2529[31] Tuinstra F, Koenig JL. Raman spectrum of45.graphite [J]. The Journal of Chemical [43] Guellali M, Oberacker R, Hoffmann, MJPhysics,1970,53(3):1126-1130.Zhang WG, Huttinger KJ. Textures of py[32] Leszek Nikiel, Paul W Jagodzinski. Ramanrolytic carbon formed in the chemicalspectroscopic characterization of graphites:infiltration of capillaries [ J]. Carbon, 2(A re-evaluation of spectra/structure cor-41(1):97-104.relation [J]. Carbon, 1993, 31(8): 1313- [44] Bokros JC. Carbon biomedical devices [J]1317Carbon,1977,15:355-371.[33] Nakamizo M, Kammereck R, Walker P L et [45] Wehrer A, Wehrer P, Duval X Decomposial. Laser raman studies on carbons[J].Cartion del acetylene, deI ethylene et du benbon,1974,12:259-267zene sur le carbon aux tres hautes tempera-[34]張福勤等C/C復合材料石墨化度的喇曼光tures et sous de basses pressions [J]. Car譜表征[J]無(wú)機材料學(xué)報,2003,18(2):361bon,1983,21(3):247-253.366[46] Ehrburger P, Louys F, Lahaye J. The con-[35] J. L. Kaae The mechanism of the depositioncept of active sites applied to the study ofof pyrolytic carbon [J]. Carbon,1985,23轉第13頁(yè)第1期張琳等PF與PVB共混炭化制備雙電層電容器用多孔炭材料的研究13·性炭及其功能[J].太化科技,1991,1(4):614結論(1)以酚醛樹(shù)脂和聚乙烯醇縮丁醛為原料,采用[5] FReeMan J J, GIMBLETT F G R,聚合物共混炭化法,在酚醛樹(shù)脂與聚乙烯醇縮丁醛ROBERTS R A, et al. Studies of activated質(zhì)量比為1:1,炭化溫度為900℃,炭化時(shí)間為1hcharcoal cloth I. Mesopore development的條件下,可制得比電容為26.3F/g的雙電層電容induced by phosphate impregnates [J]器用多孔炭材料。Carbon,1988.26(1):7-12.(2)炭化溫度、酚醛樹(shù)脂與聚乙烯醇縮丁醛的質(zhì)[6] OZAKI J, ENDON, OHIZUMI W,etal.No量比和混合狀態(tài)是影響多孔炭材料BET比表面積vel preparation method for the production of孔容和比電容的主要因素。mesoporous carbon fibers from polymer(3)以聚合物共混炭化法制備的多孔炭作電極blend[J]. Carbon,1997,35(1):1032-1033的模擬EDLC具有良好的充放電性能,既可在小電[7] KAMEGAWA K, YOSHIDAH. Preparation流下長(cháng)時(shí)間慢速充放電,也能在大電流下短時(shí)間快and characterization of swelling porous car速充放電,但存在能量密度較低和在大電流下放電bon beads [J]. Carbon, 1997, 35(1):631時(shí)電容量下降較多的缺點(diǎn)。參考文獻:[8]劉洪波,??×?張紅波·雙電層電容器高比[1] SIRCAR S, GOLDEN T O, RAO MB.活性表面積活性炭的研究[J]電子元件與材料,炭:氣體分離和貯存[]新型炭材料,1997122002,21(2):19-23[9] SARANGAGAPANI S, TILAK B V, CHEN[2]申海平,嚴加松,丁宗禹等.石油瀝青制備炭C P Materials for electrochemical capacitors質(zhì)催化劑載體的研究[]石油瀝青,2003,17[J]. J Electrochem Soc., 1996, 143(11): 3791(4):14-19.3798[3]孟慶函,張睿李開(kāi)喜等,雙電層電容器用中[10] YAMASHITA Y, OUCHI K. A study on孔活性炭電極的電化學(xué)性能[J].功能材料,carboniztion of phenol-formaldehyde resin2002,33(6):628-630.labeled weth deuteriu and 13C [J]. Carbon[4] MiLD J,李玉蓮.由煤、木材制取的大孔活1981,19(1):89—94(接第22頁(yè))of the deposition parameters on the texturecarbon reactivity [J]. Carbon, 1989, 27(3):of pyrolytic carbon layers deposited on pla-389-393.nar substrates [J]. Carbon, 2004, 42:279[47] Lahaye J, Louys F, Ehrburger P. The reac-286.tivity of carbon-carbon composites [J]. [51] Kinncy CR, Delbel E Pyrolytic Behavior ofCarbon,1990,28(1):137-141unsubstituted Aromatic Hydrocarbons [J][48]張守陽(yáng),李賀軍,唐松.沉積表面粗糙度對熱Ind. Eng. Chem,1954,46:548-556解炭組織結構的影響[].炭素技術(shù),200,[52] Kobayashi F, Ikawa K, Iwamoto F. Deposi(5):11-15.tion of dense isotropic carbon from acety-[49] Je JH, Jai-Young Lee. The influence of de-lene in fluidized bed u]. Carbon, 1974, 12:87position mechanism on the microstructure ofpyrolytic carbon deposited in a tumbling[53] Hittinger KJ, Merdes WF. The carbon[J] Journal of Materials Science, 1985,steam reaction at elevated pressure forma839-844tions of product gases and hydrogen inhibi[50] Pauw VD, Kalhofer S, Gerthsen D Influencetions[J]. Carbon,1992,30(6):883-894.

論文截圖
版權:如無(wú)特殊注明,文章轉載自網(wǎng)絡(luò ),侵權請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習使用,務(wù)必24小時(shí)內刪除。
欧美AAAAAA级午夜福利_国产福利写真片视频在线_91香蕉国产观看免费人人_莉莉精品国产免费手机影院