

四氫呋喃-乙醇變壓精餾分離
- 期刊名字:化學(xué)工程
- 文件大?。?93kb
- 論文作者:紀智玲,王志恒,李文秀,于三三,張志剛,李雙明,范俊剛,張弢
- 作者單位:沈陽(yáng)化工大學(xué)遼寧省化工分離技術(shù)重點(diǎn)實(shí)驗室
- 更新時(shí)間:2020-06-12
- 下載次數:次
第42卷第10期化學(xué)工程Vol 42 No 102014年10月CHEMICAL ENGINEERING( CHINA)Oct.2014四氫呋喃-乙醇變壓精餾分離紀智玲,王志恒,李文秀,于三三,張志剛,李雙明,范俊剛,張弢(沈陽(yáng)化工大學(xué)遼寧省化工分離技術(shù)重點(diǎn)實(shí)驗室,遼寧沈陽(yáng)110142)摘要:共沸混合物分離是化工過(guò)程中常見(jiàn)的分離難題。變壓精餾是根據物系壓力改變而使液體混合物共沸點(diǎn)組成發(fā)生變化,進(jìn)而使共沸物系得以分離的一種有效分離方法。在熱力學(xué)分析基礎上,提出了四氫呋喃乙醇液體混合物變壓精餾分離雙塔工藝流程。以 NRTL-RK為物性計算方法,利用 Aspen Plus模擬軟件對變壓精餾分離工藝過(guò)程進(jìn)行分析及模擬,并對工藝參數進(jìn)行優(yōu)化。研究結果表明:在常壓塔和0.8MPa高壓塔組成的雙塔流程中變壓精餾可將四氫呋喃-乙醇最低共沸混合物進(jìn)行較好的分離。關(guān)鍵詞:汽液平衡;共沸物;變壓精餾;模擬中圖分類(lèi)號:TQ028.3文獻標識碼:A文章編號:10059954(2014)100020-05DOI:10.3969/j.isn.10059954.2014.10.005Pressure-swing distillation separation oftetrahydrofuran-ethanol azeotropeJI Zhi-ling, WANG Zhi-heng, LI Wen-xiu, YU San-san, ZHANG Zhi-gang, LI Shuang-mingFAN Jun-gang, ZHANG TaoKey Lab of Chemical Separation Technology of Liaoning Province, Shenyang University of Chemical TechnologyShenyang 110142, Liaoning Province, ChinaAbstract: Azeotrope separations are tough issues commonly confronted in chemical processes. Pressure-swingdistillation( PSD)is based on the fact that azeotropic composition varies with the operational pressure, by whichazeotrope is then separated effectively. The azeotrope of tetrahydrofuran-ethanol characters that azeotropic pointappears in the vapor-liquid equilibrium, which makes it hard to separate tetrahydrofuran-ethanol liquid mixtureexperimentally and industrially. PSD is expected to fix this kind of separations effectively. In the research a dualcolumn process flow of tetrahydrofuran-ethanol pressure-swing distillation was put forward based on thermodynamicsanalysis. Aspen Plus simulation of pressure-swing distillation process of tetrahydrofuran-ethanol azeotrope wascarried out via NRTL-RK method. The technological parameters were optimized based on the process analysis. Itshows that tetrahydrofuran-ethanol azeotrope can be well separated by means of a two-column pressure-swingdistillation process, which is composed of atmospheric tower and high pressure tower(0. 8 MPa). It is helpful inguiding the process design for separation of tetrahydrofuran-ethanol azeotropeKey words: vapor-liquid equilibria; azeotrope; pressure-swing distillation; simulation四氫呋喃與乙醇是重要的有機溶劑,廣泛應用優(yōu)點(diǎn)12。于化工、制藥、染料等領(lǐng)域。工業(yè)生產(chǎn)中產(chǎn)生的四氫應用 Aspen Plus模擬軟件,依據四氫呋喃呋喃和乙醇液體混合物具有最低共沸點(diǎn),采用普通乙醇體系汽液平衡數據研究了其變壓精餾分離精餾無(wú)法對其實(shí)現有效分離。具有最低共沸點(diǎn)的難過(guò)程特性,并對過(guò)程工藝參數進(jìn)行優(yōu)化分析,提出分離混合物,可以采用恒沸精餾,萃取精餾,加鹽精個(gè)具有較高分窣效率的四氫呋喃-κ醇雙塔變壓精餾等6特殊精餾方法。但與之相比,變壓精餾更餾分離路中國煤化工錄該類(lèi)共沸體系具有工藝簡(jiǎn)單、不引入雜質(zhì)以及節約能耗等獨特分離過(guò)程CNMHG收稿日期:20140作者簡(jiǎn)介:紀智玲(1962—),女,副教授,主要研究傳質(zhì)過(guò)程及新型分離技術(shù),電話(huà):1860419780,E-mail:yizhiling@163.com。紀智玲等四氫呋喃-乙醇變壓精餾分離211四氫呋喃-乙醇變壓精餾精餾,塔底物流4為所得到的高純度的四氫呋喃產(chǎn)變壓精餾是利用二元混合物系對拉烏爾定律產(chǎn)品,塔頂共沸物料經(jīng)物料路線(xiàn)2返回到常壓塔LOW生偏差的特點(diǎn),改變體系壓力可以移動(dòng)常壓下形成繼續精餾。的二元物系共沸點(diǎn)或改變其共沸組成,通過(guò)不同操作壓力的精餾過(guò)程組合可以在塔頂或者塔底得到高純度組分。1.1四氫呋喃-乙醇物系在不同壓力下汽液相平衡FEEDH LOWHIGH從圖1和表1可以看出,隨著(zhù)壓力的增加四氫呋喃-乙醇的共沸點(diǎn)沿參考線(xiàn)向左移動(dòng),四氫呋喃在共沸物中的摩爾分數減少。常壓以下,壓力的減小EED原料;3-乙醇;4四氫呋喃;LOW常壓塔;HGH高壓塔;使四氫呋喃-乙醇的相對揮發(fā)度增大,但是對設備的B1-減壓閥;B2輸送泵氣密性要求增加,為了降低操作成本,選擇使用常壓圖2變壓精餾工藝流程Fig 2 PSD Flowchart塔。在加壓條件下,隨著(zhù)壓力的增加,四氫呋喃-乙醇相對揮發(fā)度增加,但增加到一定程度時(shí),壓力的增2模擬計算與優(yōu)化分析加對相對揮發(fā)度的影響明顯變小,為了降低設備的2.1模擬規定投資費用。高壓塔選擇操作壓力為810.6kPa。氣液平衡采用 NRTL-RK模型,模擬計算依據見(jiàn)表20.8表2變壓精餾模擬計算依據Table 2 basic facts for pSd simulation0.6參數名稱(chēng)進(jìn)料量/進(jìn)料組成乙kmol·h-2)醇摩爾分數進(jìn)料溫度分離要求乙麗0.4醇摩爾分數d506.625kPa數值0.7常溫0.995以上e 810.6kPaf 1 000 k Pa2.2模擬過(guò)程分析與優(yōu)化液相四氫呋喃摩爾分數對分離過(guò)程工藝而言,產(chǎn)品純度、產(chǎn)量與能耗之圖1壓力對物系汽液平衡的影響間互相制約。因此需要選擇滿(mǎn)足生產(chǎn)工藝條件下投Fig. 1 Pressure effect on system vapor-liquid equilibrium入較小能耗的操作條件。表1壓力對共沸組成的影響2.2.1常壓塔總塔板數對乙醇產(chǎn)品純度(摩爾分Table 1 Effect of pressure on azeotrope composition數)與再沸器熱負荷Q的影響常壓塔總塔板數對塔底乙醇產(chǎn)品純度(摩爾分60.795kPa100kPa506.625kPa810.6kPa1000kPa乙醇摩數)及再沸器熱負荷Q影響見(jiàn)圖30.0250.09350.6360.902爾分數共沸溫51.0465.35122.33141.97150.830.99922700.99乙醇摩爾再沸器熱貧萄1.2變壓精餾常規工藝流程0.992240依據1.1節的分析可設計變壓精餾流程如圖2所示。在圖2中,循環(huán)高壓共沸組成混合物2引入0.993中國煤化工3032220常壓塔IoW循環(huán)進(jìn)料,塔頂物流1為常壓條件下的CNMHG共沸物,塔底物流3可以得到高純度的乙醇產(chǎn)品;常圖3總塔板數的影響壓塔塔頂的共沸物即物流1進(jìn)入高壓塔HGH進(jìn)行Fig 3 Effects of total number of trays化學(xué)工程2014年第42卷第10期由圖3可以看出,乙醇產(chǎn)品純度(摩爾分數)隨由圖5可知,隨循環(huán)物流進(jìn)料位置的下移,乙醇著(zhù)總塔板數的増加而增大,但塔底乙醇產(chǎn)品純度達產(chǎn)品純度降低而所需的再沸器熱負荷増加。到一定程度,其隨塔板數增加的幅度趨緩,之后保持由圖6可知,原料的進(jìn)料位置過(guò)低或過(guò)高時(shí),乙定值。同樣隨著(zhù)塔總板數的増加,再沸器熱負荷φα醇產(chǎn)品純度玓降低且再沸器熱負荷增加。降低。綜合考慮,常壓塔理論塔板數選擇為22塊,可避免塔板數增加導致的設備投資費用。1.012.2.2常壓塔回流比對乙醇產(chǎn)品純度與能耗Q的影響0.98乙醇摩爾分數沸器熱負荷在常壓塔理論塔板數為22的情況下,研究回流21400.96比對產(chǎn)品純度及再沸器熱負荷的影響見(jiàn)圖4。21200.9421000.931.0020802800246810121516182022進(jìn)料位置圖6主進(jìn)料位置的影響0.98Fig 6 Effects of feed location乙醇摩爾分數0-再沸器熱負何0.96故常壓塔循環(huán)進(jìn)料最佳進(jìn)料位置在第3塊塔0.95板,主進(jìn)料最佳進(jìn)料位置在第9塊塔板00.20.40.60.81.01.2回流比R2常壓塔循環(huán)進(jìn)料量對乙醇產(chǎn)品純度及再沸圖4回流比的影響器熱負荷的影響Fig 4 Effects of reflux ratioqb/q表示常壓塔塔頂產(chǎn)品摩爾流量與主進(jìn)料摩爾流量之比,它也可反映循環(huán)進(jìn)料量對常壓塔操圖4可知隨著(zhù)回流比R1的增加,塔底乙醇產(chǎn)品作的影響。選用前述適宜的操作參數,研究循環(huán)進(jìn)料量對產(chǎn)品純度及再沸器熱負荷的影響。純度(摩爾分數)及再沸器熱負荷Qε均顯著(zhù)增加,但乙醇產(chǎn)品純度達到一定值后趨于穩定,而再沸器熱負荷卻是線(xiàn)性增大。在滿(mǎn)足分離要求前提下盡可能選擇較小的回流比,故常壓塔選擇回流比為0.6。20002.2.3進(jìn)料位置的影響1800選擇常壓塔理論塔板數為22,回流比為0.6,常0.96乙醇摩0-再沸器1600壓塔循環(huán)進(jìn)料1和主進(jìn)料FEED位置對產(chǎn)品純度及1400再沸器熱負荷Q的影響如圖5和圖6所示。0.91.1131.51.71.92.12240qq圖7常壓塔循環(huán)進(jìn)料量的影響Fig. 7 Effects of reflux feeding flow rate21800.94長(cháng)如圖7所示,隨常壓塔循環(huán)進(jìn)料量增大,即常壓2140塔塔頂采出量增大,乙醇產(chǎn)品純度高顯著(zhù)增加,但相一乙醉摩爾分數再沸器熱負荷2100應再沸器熱負荷也明顯增大。從圖7中可以得出,0.84合適的循環(huán)02468101215161820中國煤化工2.2.5高CNMHG圖5循環(huán)進(jìn)料位置的影響繼續這力同陽(yáng)行優(yōu)化分析,優(yōu)Fig 5 Effects of reflux feeding location化工藝條件總結果如表3所示。紀智玲等四氫呋喃-乙醇變壓精餾分離表3工藝流程優(yōu)化操作參數Table 3 Optimization of operating parameters設備名稱(chēng)參數名稱(chēng)參數值平四氫呋喃汽相總塔板數四氫呋喃液相循環(huán)物流進(jìn)料位置2390000乙醇液相乙醇汽相常壓塔LOW主進(jìn)料位置回流比0.6操作壓力/kPa0246810121416182022總塔板數塔板數進(jìn)料位置高壓塔HGH圖8常壓塔汽液摩爾分數分布回流比8 Mole fraction distribution of atmospheric column操作壓力/kPa810.63模擬結果與討論0.93.1變壓精餾流程模擬結果采用表3所示優(yōu)化工藝參數,對圖2所示流程0-四氫呋喃液相0.5乙醇汽相進(jìn)行模擬優(yōu)化,模擬結果如表4所示。勤0.4一乙醇液相表4變壓精餾流程模擬結果0.2Table 4 PSD simulation results468101214161820222426流股FEED塔板數圖9高壓塔汽液摩爾分數分布溫度/566.9478.98Fig9 Mole fraction distribution of high pressure column壓力/kPa102.925811.8101.725104.24摩爾流量100150120kmol h)4結論四氫呋喃0.30.7330.670.00120.997(1)由汽液相平衡數據分析可知,壓力改變可摩爾分數以較大程度上移動(dòng)四氫呋喃-乙醇共沸點(diǎn),使得變壓精餾可以較好地分離四氫呋喃-乙醇二元共沸物系。乙醇摩0.70.2670.3330.99880.003爾分數(2)應用 Aspen Plus模擬軟件對變壓精餾分離四氫呋喃-乙醇共沸物系雙塔工藝流程進(jìn)行研究,得由表4結果可知,變壓精餾分離后,常壓塔底可該雙塔工藝流程,可得到純度為99.7%的四氫呋喃得到摩爾分數99.88%的乙醇,高壓塔底可得到與99.5%的乙醇產(chǎn)品99.7%的四氫呋喃。(3)本研究提出的四氫呋喃-乙醇變壓精餾流3.2塔內汽液摩爾分數分布程對共沸物系分離工藝優(yōu)化分析和對相應現有工藝常壓塔LOW和高壓塔HCH塔內汽液相摩爾裝置改造具有重要的指導意義。分數分布分別如圖8和圖9所示。由圖8和圖9可見(jiàn),常壓塔DOW和加壓塔參考文獻:HlH塔頂區域汽液二相均接近共沸組成;而分別(1 BRUNNER E, SCHOLZ A G R.orir在塔釜區域,汽液二相摩爾分數均趨近于1,反映該中國煤化工 system at25,50變壓精餾流程可在常壓塔底得到高純乙醇和在高壓塔底得到高純四氫呋喃,該結論與變壓精餾流程模2]YOSHCNMHG4,29:2831.AAGI A. AAIU M. Indirect determi擬結果互為印證,工藝操作條件設置合理,變壓精餾nation of vapor-liquid equilibria by a small ebulliometer流程方案可行。Tetrahydrofuran-alcohol binary systems[ J. J Chem Eng24·化學(xué)工程2014年第42卷第10期Data,1980.25:344.(7):1495-1499[3 YUAN Huajun, AN Yue, XU Guohua, et al. Kinetics of [ 10] LI Weisong, SHI Lei, YU Baoru, et al. New pressure-swingquid-phase hydrogenation of toluene catalyzed by hydro-distillation for separating pressure-insensitive maximumgen storage alloy MIN is[J]. J Rare Earths, 2004, 2boiling azeotrope via introducing a heavy entrainer: design(3):385389g Chem Res. 2013. 524]董營(yíng),肖穎,黃耀東,等.萃取精餾分離碳酸二甲酯-乙7836-7853醇二元共沸物[J].化工進(jìn)展,2013,23(4):750-756[11 MODLA G, LANG P. Removal and recovery of organic5]劉偉明,程慶來(lái),劉麗波,等.萃取精餾分離四氫呋喃solvents from aqueous waste mixtures by extractive and乙醇共沸物系[J].天津化工,2009,23(3):1921pressure swing distillation J]. Ind Eng Chem Res[6]楊慧,陳礪,嚴宗誠,等.燃料乙醇萃取精餾工藝的有2012,51:11473-11481效能分析[J].華南理工大學(xué)學(xué)報:自然科學(xué)版,201038(8):4043[12]紀智玲,王志恒,李文秀,等.具有最低共沸點(diǎn)的難分[7 SEADER J D, HENLEY E J. Separation process princi離物系變壓精餾分離[J].化工進(jìn)展,2014,3(s1)193-194ples[ M]. 2nd ed. Shanghai: East China University of Sci-ence and Technology Pres, 2007: 617-646[13 Aspen Technology Inc. Aspen Plus user guider [MI[8 REPKE J U, KLEIN A D, FORNER F R, et al.PressureNew York: Aspen Technology Co Ltd Press, 2006:wing distillation for separation of homogeneous azeotropic215-219mixtures in mass and heat integrated column system: oper- [14] GMEHLING J, ONKEN U VAPOR-LIQUID equilibriation performance[ J]. IEEE, 2004 3.543-3546um date collection. Chemistry Data Series Vol. I. Part9]趙俊彤,李玲,許春建,等.熱集成變壓精餾分離乙醇1[ M]. Frankfurt: Published by DECHEMA, 1991甲苯體系的過(guò)程模擬和優(yōu)化[J].化工進(jìn)展,2013,32135-142上接第10頁(yè)】Physicochemical and Engineering Aspects, 2003, 220[5 ZHU Zhenping, LIU Zhenyu, LIU Shoujin. A novel car-261-269on- supported vanadium oxide catalyst for NO reduction[8]羅衛,強敏,唐雪萍,等.兩種納米結構五氧化二釩的with NH, at low temperatures [J]. Applied Catalysis合成與表征[J].工業(yè)安全與環(huán)保,2013,39(2)Environmental,1999,23(4):223229[6]KUNDAKOVIC L, STEPHANOPOULOS M F. Reduction [9 MA Jianrong, LIU Zhenyu, HUANG Zhanggen. Ad-characteristics of copper oxide in cerium and zirconiumsorption and oxidation of NH, over V,OS/AC catalystoxide systems[ J]. Applied Catalysis A: General, 1998[JJ. Chinese Journal of Catalysis, 2006, 27(1):9117(1):132994[7] RANGA R G, RANJAN SH, GOPAL M B. Surface and[10]高家誠,陳功明,楊紹利.含納米V2O3顆粒釩催化劑catalytic properties of Cu-Ce-O composite oxides prepared的制備[J].稀有金屬材料與工程,2004,3(4):by combustion method [ J. Colloids and Surfaces A439441◆*歡迎投稿,歡迎訂闖,歡迎刊登廣告TH中國煤化工CNMHG
-
C4烯烴制丙烯催化劑 2020-06-12
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-06-12
-
生物質(zhì)能的應用工程 2020-06-12
-
我國甲醇工業(yè)現狀 2020-06-12
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-06-12
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-06-12
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-06-12
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-06-12
-
甲醇制芳烴研究進(jìn)展 2020-06-12
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-06-12