

反硝化除磷工藝研究
- 期刊名字:食品與生物技術(shù)學(xué)報
- 文件大?。?03kb
- 論文作者:鄒華,阮文權,陳堅
- 作者單位:江南大學(xué)
- 更新時(shí)間:2020-10-22
- 下載次數:次
第26卷第2期食品與生物技術(shù)學(xué)報VoL 26 No. 12007年3月Journal of Food Science and biotechnologyMar.2007文章編號:1673-1689(2007)02-0071-05反硝化除磷工藝研究鄒華,阮文權,陳堅(江南大學(xué)工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗室,江蘇無(wú)錫214122)摘要:研究了反硝化除磷工藝的運行效果。結果表明,此反硝化除磷工藝可以較好地進(jìn)行除磷脫氮,但是磷的去除對進(jìn)水氮的濃度有一定的要求。在進(jìn)水COD400mg/L,總磷15mg/L,氨氪84mg/L的條件下COD的降低率可達96%以上,氪的去除率穩定在86%~88%,磷的去除率為92%~95%。進(jìn)水氨氦質(zhì)量濃度為60mg/L時(shí),磷的去除率為78%,在進(jìn)水氨氮質(zhì)量濃度降為44mg/L時(shí)磷的去除率降為68%。反硝化除磷比以氧為電子受體的生物除磷可減少耗氧55.5%,剩余污泥的產(chǎn)生量可減少53%,溫室氣體CO2的產(chǎn)生量可減少體積分數21.4%。關(guān)鍵詞:廢水處理;強化生物除磷(EBPR);反硝化除磷;除磷脫氮中圖分類(lèi)號:X703文獻標識碼:AStudy of Denitrifying Dephosphatation ProcessZOU Hua, RUAN Wen-quan, CHEN Jian(Key Laboratory of Industrial Biotechnology, Ministry of Education, Southen Yangtze University, Wuxi 214122, China)Abstract: a denitrifying dephosphatation process was operated in this study. The resultshowed that the denitrifying dephosphatation process could remove phosphorus and nitrogensuccessfully at an adequate concentration of nitrogen in inflow. Above 96% Cod was removedwhen the inflow COD, total phosphorus(TP) and ammonia nitrogen(NH3-N) were 400 mg/86%-88% nitrogen and 92%-95% phremoved simultaneously. But when the inflow NH3-N was 60 mg/L,78% phosphorus wasremoved, once the inflow NH3-N dropped to 44 mg/L, only 68% phosphorus was removed inhe system. In the system used nitrate as electron acceptor, the oxygen consumption was 555% less than the system that oxygen was used as electron acceptor. The sludge and COproduction was 53% and 21. 4% less, respectively.Kwater treatment; Enhanced Biological Phosphorus Removal EBPR )denitrifying dephosphatation; phosphorus and nitrogen removal研究廢水除磷技術(shù),控制磷的排放,保護水體聚羥基烷酸(PHA)的形式儲存,同時(shí)釋放磷酸不受富營(yíng)養化的影響是一個(gè)亟待解決的問(wèn)題。目鹽。在隨后存在電子受體(如:氧)的條件下能吸前一個(gè)使用很廣的處理方法是強化生物除磷收比所釋放的更多的磷合成聚磷酸鹽顆粒并儲存(EBPR),其利用聚磷菌在“壓抑”(如:厭氧)條件下于胞Ha中國煤化工到從廢水中除磷的能利用分解體內聚磷酸鹽產(chǎn)生的能量將碳源合成目的項高效低能耗的廢CNMHG收稿日期:2006-04-1作者簡(jiǎn)介:鄒華(1972-),男,江蘇無(wú)錫人,工學(xué)博土,主要從事廢水生物技術(shù)處理方面的研究.Email:;ohua@sytu.edu.cn食品與生物技術(shù)學(xué)報第26卷水處理技術(shù),它在有效去除廢水中有機污染物的同磷工藝流程的運行效果進(jìn)行了一些初步研究,并從時(shí)起到除磷效果,受到人們的普遍重視理論上對反硝化除磷工藝和厭氧/好氧除磷工藝的強化生物除磷的大量研究結果都證實(shí),硝酸鹽耗氧量污泥產(chǎn)生量及CO2產(chǎn)生量進(jìn)行了比較。也可以被聚磷菌用作為最終電子受體進(jìn)行生物除磷2-3],即反硝化除磷。由于反硝化除磷不需要氧,1實(shí)驗裝置和方法并能做到“一碳兩用”降低除磷脫氮對碳源的需求1.1實(shí)驗裝置及流程量。因此,對于解決目前廢水處理中除磷脫氮碳實(shí)驗所用系統由厭氧池、1沉淀池好氧池、22源(COD)不足的問(wèn)題,以及降低曝氣及運行費用都沉淀池缺氧池和3·沉淀池組成,如圖1所示。其有很重要的意義,而且其還可減少污泥和溫室氣體中,厭氧區有效容積為365L,好氧區及缺氧區為5.12CO2的產(chǎn)生-6)。L,沉淀池都為21L。進(jìn)水體積流量1.4L/h,厭氧區作者對根據反硝化除磷原理組合的反硝化除水力停留時(shí)間2.5h,好氧區及缺氧區的為4h圖1實(shí)驗裝置示意圖Fig. 1 The experimental system sketch map1.2實(shí)驗用水及接種污泥12.I實(shí)驗用水實(shí)驗用水為人工合成廢水,廢2結果與討論水成分同文獻[1-3]:COD400mg/L;POP152,1反硝化除磷工藝的運行mg/L;pH7.0;氨氮濃度因需要而改變。啟動(dòng)階段流程在厭氧池后有個(gè)沉淀池12.2接種污泥接種污泥為經(jīng)馴化有高效除磷污泥和廢水經(jīng)過(guò)厭氧階段后進(jìn)入沉淀池。沉淀后效果的污泥。接種后系統中MLSS為4.0mg/L。清液進(jìn)入好氧池進(jìn)行硝化,沉淀污泥進(jìn)入缺氧池進(jìn)1.3實(shí)驗裝置的運行控制行反硝化除磷。這樣好氧池中只進(jìn)行好氧硝化作反硝化除磷工藝流程共運行近半年的時(shí)間用,其所需的曝氣量只需滿(mǎn)足硝化的要求即可,所(163d)。期間分為2個(gè)階段:有磷的去除都是在缺氧條件下去除的。此流程可第1階段(啟動(dòng)階段)78d:啟動(dòng)運行了反硝化進(jìn)一步減少除磷脫氮對曝氣和碳源的要求。流程工藝。平均進(jìn)水COD400mg/L,總磷15mg/L,氨中硝化污泥和除磷污泥分開(kāi)為兩個(gè)獨立的污泥循氮84mg/I環(huán)流,可分別進(jìn)行控制泥齡、MLSS等,以滿(mǎn)足硝化第2階段(運行階段)85d:運行了反硝化工和除磷的不同需要藝。進(jìn)水COD和總磷濃度不變,改變進(jìn)水氨氮質(zhì)反硝化除磷系統的啟動(dòng)運行獲得了較好的除量濃度為60mg/L,44mg/L,90mg/l,84mg/L磷脫氮效果。圖2、3和4是運行結果圖。COD、總運行中控制污泥齡10磷、總氮在經(jīng)過(guò)60d的啟動(dòng)運行后都獲得了穩定1.4分析項目及測試方法的、很好的去除。COD的降低率隨著(zhù)時(shí)間的推移逐COD:采用5B-1型COD快速測定儀測定;漸提高,最終穩定在96%以上??偭椎娜コ蕪腘O21N:酚二磺酸光度法;TP:采用鉬銻抗分光光51%提%~95%??偟娜コ蕪?3%逐度法測定;NH4+N:納氏試劑光度法;漸中國煤化工38%??梢?jiàn),經(jīng)過(guò)MLVSS:采用重量法測定;MLSS:采用重量法測dCNMHG的去除COD和氮定;sV:30min沉降法;SvI:采用標準方法測定磷,去除率都超過(guò)或接近90%SV3o第73100400:A心80遲營(yíng)餐,營(yíng)鑫,去除率去除率85152229364350576471781815222936435057647178時(shí)間/d時(shí)間/d圖2COD的去除情況圖4總氮的去除情況Fig. 2 The removal of CODFig 4 The removal of nitrogen100直有很好的降低效果,穩定在96%~98%,氮的去N名除率也較為穩定,在83%~89%之間稍有波動(dòng)。磷的去除情況由于進(jìn)水氨氮質(zhì)量濃度的不同有較大的波動(dòng)。在進(jìn)水氨氮質(zhì)量濃度降為60mg/L時(shí),磷總磷去除率的去除率降為45%,后逐漸提高至78%;在進(jìn)水氨2氮質(zhì)量濃度降為44mg/L時(shí),磷的去除率降為181522293643505764717830%后逐漸提高至68%;當氨氮質(zhì)量濃度變?yōu)?0時(shí)間dmg/L時(shí),磷的去除率為80%,后逐漸提高至94%。圖3總磷的去除情況可見(jiàn)反硝化除磷系統能夠有效地去除廢水中的Fig 3 The removal of total phosphateCOD和氮磷。磷的去除與進(jìn)水中氮的含量有關(guān),進(jìn)2.12運行階段圖5~7和表1為反硝化除磷工水含有足夠的氮才能夠保證反硝化除磷所需的電子藝在進(jìn)水氨氮平均質(zhì)量濃度分別是60mg/L,44受體(NO3-)的量。因此反硝化除磷工藝適用于原水mg/L,90mg/L,84mg/L的條件下的運行結果。含氮量較高的廢水,對于原水含氮量較少的廢水需在由圖可知在所有進(jìn)水氨氮質(zhì)量濃度條件下,COD一處理中適當地添加氮,才能很好地運行此工藝40帥的校腳紅2w城峭出:10250去除率115時(shí)間d圖5COD的降低情況Fig. 5 The removal of COD86420營(yíng)套,420去除率中國煤化時(shí)間dCNMHG圖6總磷的去除情況Fig. 6 The removal of total74食品與生物技術(shù)學(xué)報第26卷營(yíng)套103115151圖7總氮的去除情況Fig. 7 The removal of nitrogen表1反硝化除磷工藝的運行結果2.2反硝化除磷工藝與厭氧/好氧除磷工藝的比Tab. I COD, phosphorus, nitrogen, MLSS concentration *sand sVI in different part of denitrifying dephos-根據 Smolders的生物除磷過(guò)程好氧代謝的化phatation system學(xué)量模型,每去除0.04mol磷需消耗0.55molO2,日期(mgL)進(jìn)水厭氧池好氧池(區的化率/%缺氧池去除同時(shí)產(chǎn)生0.34mol生物量,消耗0.59moCO而根據Kuba的生物除磷過(guò)程缺氧代謝的化學(xué)量模38535.68型,在利用硝酸鹽為最終電子受體的反硝化除磷過(guò)TP14.267.565.33.5175.4程中,每去除0.04mol磷需消耗硝酸鹽0.58mol,氨氮質(zhì)量不需要消耗氧,同時(shí)產(chǎn)生0.16mol生物量,消耗濃度60.656.800. 75 mol CO, [91硝基氮質(zhì)量濃度2.2.1耗氧量的比較MLSS/3.653.433.78(1)除磷耗氧量:好氧代謝每去除1mg磷需耗Ⅵ/7258.574.6氧14.20mg,而缺氧代謝每去除1mg磷只需消耗天COD39739.817.51596,硝酸鹽6.55mg,不需要消耗氧TP14.282.673.64.667.6(2)硝化耗氧量:好氧條件下的生物硝化過(guò)程氨氮質(zhì)量濃度44.945.805.1288.6分兩步進(jìn)行:首先是亞硝酸鹽細菌將氨氮轉化為NO2,然后由硝酸鹽細菌將NO2進(jìn)一步氧化為硝基氮質(zhì)量濃度0043.6NO3。反應式如下:4,02硝酸細菌/44.265.345.655NH4+76O2+109HCOCH,O2N+97.854NO2+57H2O+104H2CO3天400NO7+NH++4H2CO3+HCO3+1950TP13.589.386.90.894.1硝酸細菌CsH,O2N+3H20+400NO(2)質(zhì)量濃度9883.50式(1)與式(2)合并得下式硝基氮質(zhì)量濃度2.3079.6NH++1.8602+1.98HCO2硝化細菌(0.0181+MLSS/3.984.453.9850.66.750.80.0025)CHO2N+1.04H2O+0.98NO+第1.88H2CO40036.58.397.9由式(1),氧化1mgNH4+N為NO2-N,需TP14.289.888.293.0要3.16mgO2。由式(2),氧化1mgNO2N為氨氮質(zhì)量濃度84.480.2010.387.8NO中國煤化工硝化反應轉化1mg硝基氮質(zhì)量濃度007.9NHMLSS/4.013.97∴NMHG27mg(不考慮硝化/56.865.756.6由此,在不考慮硝化過(guò)程中硝化細菌的增殖情況下為400mg/L,氨氮質(zhì)量濃度第2期g/L,總磷15mg/L的廢水除磷脫氮的理論耗氧:體的工藝每去除0.04mo磷消耗0.75 mol CO2,以氧為電子受體時(shí),硝化需要耗氧170.8mg,除磷即每去除lg磷消耗CO226.6g。每去除1g磷反需要耗氧213mg,共需耗氧383.8mg;以硝酸鹽為硝化除磷可多消耗CO25.7g,減少CO221.4%。電子受體時(shí),硝化耗氧170.8mg。每去除15mg磷反硝化除磷可減少耗氧213mg,即每去除1g磷耗3結論氧降低了55.5%反硝化除磷可以較好地進(jìn)行除磷脫氮,但是磷222污泥產(chǎn)生量的比較污泥的分子式可表示的去除對進(jìn)水氮的濃度有一定的要求。在進(jìn)水為CH209O.s4Na.2oPa.o5,摩爾質(zhì)量為26g/mol。以COD400mg/L,總髒15mg/L,氨氮84mg/L的條氧為電子受體的除磷工藝每去除0.04mol磷產(chǎn)生件下COD的降低率可達96%以上,氮的去除率穩0.34mol生物量,則每去除1g磷產(chǎn)生剩余污泥定在86%~88%,磷的去除率為92%~95%。進(jìn)水7.13g;以硝酸鹽為電子受體的工藝每去除004氨氮質(zhì)量濃度為60mg/L時(shí),磷的去除率為78%;mol磷產(chǎn)生0.16mol生物量,則每去除1g磷產(chǎn)生在進(jìn)水氨氮質(zhì)量濃度降為44mg/L時(shí),磷的去除率剩余污泥335g。每去除1g磷反硝化除磷可少產(chǎn)降為68%生污泥3.78g減少了53%。經(jīng)理論計算,反硝化除磷比以氧為電子受體的22.3CO2產(chǎn)生量的比較以氧為電子受體的除生物除磷可減少耗氧55%,剩余污泥的產(chǎn)生量可磷工藝每去除0.04mol磷消耗0.59 mol CC2,即減少53%,產(chǎn)生的溫室氣體CO2可減少21.4%。每去除lg磷消耗CO220.9g;以硝酸鹽為電子受參考文獻:[1]阮文權,鄒華,陳堅.乙酸鈉為碳源時(shí)進(jìn)水COD和總磷對生物除磷的影響[].環(huán)境科學(xué),2002,23(3):49-52.RUAN Wen-quan, ZoU Hua, CHEN Jian. Effect of the COD and Total Phosphorus Concentration on Biological Phosphorus Removal Supplied with Acetate as a Sole Carbon Source[J]. Chinese Journal of Enviromental Science, 2002, 23(3)49-52. (in Chinese)[2]ZOU Hua, DU Guo-Cheng, RUAN Wen-Quan, et al. Role of nitrate in biological phosphorus removal in a sequencingbatch reactor. World Journal of Microbiology and Biotechnology(Accepted)[3]鄒華,阮文權,陳堅.硝酸鹽作為生物除磷電子受體的研究[].環(huán)境科學(xué)研究,2002,15(3):38-41ZOU Hua, RUAN Wen-quan, CHEN Jian. Study of Using Nitrate as Electron Acceptor in Biological Phosphorus Remov[4]鄒華阮文權,陳堅.硝酸鹽在除磷脫氮中的作用[刀.食品與生物技術(shù),2002,21(1):10-14.ZOU Hua, RUAN Wen-quan, CHEN Jian. The Role of Nitrate in the Removal of Nitrogen and Phosphate[J]. Journal ofWuxi University of Light Industry, 2002, 21(1): 10-14.[5]郝曉地,劉壯,劉國軍.歐洲水環(huán)境控磷策略與污水除磷技術(shù)(上)J.給水排水,1998,24(8):69-73HAO Xiao-di, LIU Zhuang, LIU Guojun. Policy and technology of phosphorus control and removal in Europe(I )[JJWater Wastewater Engineering, 1998, 24(8): 69-73 (in Chinese)[6]郝曉地,劉壯,劉國軍.歐洲水環(huán)境控磷策略與污水除磷技術(shù)(下)[J.給水排水,1998,24(9):68-71.HAO Xiao-di, LIU Zhuang, LIU Guo-jun. Policy and technology of phosphorus control and removal in Europe( U)[J]Water Wastewater Engineering, 1998, 24(9): 68-71.[7]國家環(huán)保局.水和廢水監測分析方法[M].第三版.北京:中國環(huán)境科學(xué)出版社,1989[8] Smolders G J F, Van der Mei J, van Loosdrecht M C M, et al, Stoichiometric model of the aerobic metabolism of the bio-logical phosphorus removal process[J]. Biotechnology and Bioengineering, 1994, 44(7):837-8489] Kuba T, Murnleitner E, Van Loosdrech MC M, et al. A metabolic model for biological phosphorus removal by denitrifying organisms[J]. Biotechnology and Bioengineering, 1996, 52(6):685-695中國煤化工任編輯:楊萌CNMHG
-
C4烯烴制丙烯催化劑 2020-10-22
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-10-22
-
生物質(zhì)能的應用工程 2020-10-22
-
我國甲醇工業(yè)現狀 2020-10-22
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-10-22
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-10-22
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-10-22
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-10-22
-
甲醇制芳烴研究進(jìn)展 2020-10-22
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-10-22