

THE SPACE-FRACTIONAL TELEGRAPH EQUATION AND THE RELATED FRACTIONAL TELEGRAPH PROCESS
- 期刊名字:數學(xué)年刊B輯
- 文件大?。?29kb
- 論文作者:E.ORSINGHER
- 作者單位:Università di Roma "La Sapienza",Institute of Mathematics
- 更新時(shí)間:2020-11-11
- 下載次數:次
Chin. Ann. Math.24B:1(2003),45-56.THE SPACE-FRACTIONAL TELEGRAPHEQUATION AND THE RELATEDFRACTIONAL TELEGRAPH PROCESS***E. ORSINGHER*ZHAO XUELEI**AbstractThe apace fractional telegraph equation is analyzed and the Fourier transform of ite funda-mental solution is obtained and discussed.A symmetric process with discontinuous trajectories, whose transition function satisfies thespace fractional telegraph equation, is presented. Its limiting behaviour and the connectionwith Bymmetric stable processes is also examined.Keywords Fractional calculus, Marchaud's derivative, Weyl's derivative, Riesz potential,Telegraph equation, Stable processes2000 MR Subject Classfcation 60H30, 35G05Chinese Library Classifcation 0211.6, O175.2, 0211.9,Document Code AArticle ID 0252 -9599(2003)01-0045-12g1. IntroductionIt is well known that Brownian motion B is the limit, in some sense, of the telegrapher'sprocess T (see [3]).The transition function pB(x,t) = pB of B is the fundamental solution of{器=號x∈R, t>0,(1.1)\p(x,0)= 8(x),while the transition function pr(x,t) = Pr of T is the fundamental solution of(器+2λ器=c2品,o∈R t>0,pP(x,0) =(x),(1.2)( P+(x,0)=0,”δ being the Dirac's delta function.It was discovered by Riesz5l that the transition functions of symmetric stable processeswith characteristic functionsU(r,t) =e-hI*e/2(1.3)of degree0 0.中國煤化工MYHCNMHG辨嗓畢出9HWN)工北粼國中(9°8)"[(n+x)*s+(n-)°f]-o In oJ 6-D)I(-)()It-oZ=mpτ--rMτ- 8+$-(m-I) | rP1n+2)4+(n-myad t-oC=I-ont/o(zn- zn)apnp(n+)*f+(n-x)g] I 0=z/o(zB-z)np(n+2)1+(n-) aJP"(A-m+2)/+(n+m-x)可.J m.J=fARq毗eAoqe se uoequoysteId aures aq4 jo sueou ia('8)"[([+ x)f +(a-)4] I“J(語(yǔ)-)I(( - T)I()近'P:-{t-D)r-v*]1(a+)*+(a-x)°fI5zp I 1-oz=1o6吧" J(+)+(-x)"1ap g三npsuogn4gsqns aAssaoons ot$ ID2Je‘a(chǎn)ABq M aIoJaLn=h- m 'a =h+ m uoeuoustreoe otq 8upu1orod Aq pearenpea oq ue中m(")(h+m+2)4+(h-m-啊。) pj=Ito u1ure mo Mou的eTUeO aM(εε)of導nofop”"(n+m+2)*f+(h-m+)"f-(h+m-x)f-(h-m-x)Tpzo==rh+my-(t-可.J ]}號Jpc0=z/ol1ez/olme]Ppo=' z/01ple l z/olpleOJ!IM ues @M_ghi°f衛,(zz)(hi+1)6-(h-)) 0hp(h+1)f-(h-x)5 a五幾塑緩-)黃s0_。P[華/(結-I).物工)]告(二山]血80__PI(2)(10)z/oe:SMoIToJ se i @1!IM 04 Aue?UAUOD s! 4I "Joo1dI9 NOIIVNOH HDVHDETaL TVNOILOVHJ~EOVdS SHL“7 X‘OVHZ智HHDNISHO 9 T'ON5CHIN. ANN. MATH.Vol.24 Ser.BNow, taking into account the refection formular(z)F(1-z)= gsinπz,z≠0,土1,土2,..and the Euler's duplication formula[(z+ )=2)-2T()HE)2z≠0,-1,-2,-we readily have20-1()1(1一號) _ 2-1T(號- )5(1一號)(一號)r(I)r()-四空亞1=2-+T(- [ r()r一)_π\_1F(1-號)=2-T(1 -凱(++ 0)12-21-1(2-可2)r2(1-號)1+cos弩(3.7)T(2-a) cos譬Formula (3.3) can be written asc2dr2(1-號)1+Co8登d fo f1e(x-4)+ f,(+w)au22 cos32于T2(1一號) r(2-a)- COs號 dx Joua-1dp° f(x-y)+ f(x+四d2cos號T(2-a)dx2 ]=(- 0()x)(3.8)可x|a,In the last step we have considered the defnition (2.3) for 1 0.We frst assume that during every time interval [t,t + Ot) a particle can either make ajump in the positive direction (with probability 1/2) or a jump in the negative direction(with the same probability).We also assume that the distribution of Y is the following one:for (Ot)吞
-
C4烯烴制丙烯催化劑 2020-11-11
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-11-11
-
生物質(zhì)能的應用工程 2020-11-11
-
我國甲醇工業(yè)現狀 2020-11-11
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-11-11
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-11-11
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-11-11
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-11-11
-
甲醇制芳烴研究進(jìn)展 2020-11-11
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-11-11