殼類(lèi)生物質(zhì)與煤共液化的研究 殼類(lèi)生物質(zhì)與煤共液化的研究

殼類(lèi)生物質(zhì)與煤共液化的研究

  • 期刊名字:太陽(yáng)能學(xué)報
  • 文件大?。?84kb
  • 論文作者:鄭志鋒,潘晶,黃元波,蔣劍春,戴偉娣
  • 作者單位:西南林業(yè)大學(xué)西南山地森林資源保育與利用省部共建教育部重點(diǎn)實(shí)驗室,中國林業(yè)科學(xué)研究院林產(chǎn)化學(xué)工業(yè)研究所,生物質(zhì)化學(xué)利用國家工程實(shí)驗室,國家林業(yè)局林產(chǎn)化學(xué)工程重點(diǎn)開(kāi)放性實(shí)驗室
  • 更新時(shí)間:2020-06-12
  • 下載次數:次
論文簡(jiǎn)介

第32卷第4期太陽(yáng)能學(xué)報Vol 32. No 42011年4月ACTA ENERGLAE SOLARIS SINICAApr, 2011文章編號:02540096(2011)04044-05殼類(lèi)生物質(zhì)與煤共液化的研究鄭志鋒12,潘晶',黃元波',蔣劍春2,戴偉娣2(1.西南林業(yè)大學(xué)西南山地森林資源保育與利用省部共建教育部重點(diǎn)實(shí)驗室,昆明6504;2.中國林業(yè)科學(xué)研究院林產(chǎn)化學(xué)工業(yè)研究所;生物質(zhì)化學(xué)利用國家工程實(shí)驗室;國家林業(yè)局林產(chǎn)化學(xué)工程重點(diǎn)開(kāi)放性實(shí)驗室,南京21002)摘要:以核桃殼和褐煤為研究對象系統考察了核桃殼/煤質(zhì)量配比原料四氫萘溶劑質(zhì)量比反應溫度反應時(shí)間及催化劑對共液化效果的影響。結果表明,當核桃殼/煤質(zhì)量配比為5050,原料/四氫萘溶劑比例為110,反應溫度300℃和反應時(shí)間為3min時(shí),可獲得較好的共液化效果。碳酸鈉與硫鐵催化劑對核桃殼與煤的共液化均具有明顯的催化作用轉化率和油產(chǎn)率可獲大幅提高。核桃殼與煤的共液化存在明顯協(xié)同作用,且這種作用在催化劑條件下更明顯。關(guān)鍵詞:核桃殼;煤;共液化中圖分類(lèi)號:TK6;TQ529文獻標識碼:A0引言殼類(lèi)生物質(zhì):漾濞泡核桃( Juglans sigillata)核桃殼,采自云南省漾濞縣,粉碎取150目以下殼粉于生物質(zhì)與煤共液化技術(shù)因可使煤和生物質(zhì)得以烘箱103±2℃下干燥至絕干,密封貯存備用。潔凈、綜合利用而越來(lái)越受到國內外學(xué)者的重褐煤:取自云南開(kāi)遠小龍潭,粉碎,取150目以視·2)。利用生物質(zhì)中富含的氫,可降低共液化的氫下煤粉干燥至絕干密封貯存備用。耗量降低反應條件的苛刻度、改善液化產(chǎn)物質(zhì)量,核桃殼和褐煤的工業(yè)分析和元素分析數據且共液化可在較低溫度下進(jìn)行3-6。大量研究表明,木質(zhì)素與煤的共液化存在很好的協(xié)同作用如表1。四氫萘、四氫呋喃、正已烷碳酸鈉等均為分由于生物質(zhì)的熱解溫度遠低于煤,木質(zhì)素在低于析純。硫鐵催化劑為硫鐵礦粉,取自昆明騰科商貿300℃時(shí)發(fā)生熱降解產(chǎn)生的酚類(lèi)物質(zhì)有助于打開(kāi)煤有限公司?;瘜W(xué)結構中的弱鍵,并能顯著(zhù)提高液化產(chǎn)品的質(zhì)量表1原料的工業(yè)分析和元素分析數據和產(chǎn)率。Table 1 Analyses of walnut shell and coal核桃殼目前大都被廢棄或僅部分被當作農戶(hù)燃工業(yè)分析/%元素分析/%試樣一料,利用價(jià)值低且污染環(huán)境但核桃殼富含木質(zhì)素,Me Ad V- FCd [C][H] [N] [s][o](diff其木質(zhì)素含量可高達50%以上叫。有關(guān)殼類(lèi)生物核桃殼2.251.46822314.064.506.850.5201343.00質(zhì)與煤共液化方面的研究未見(jiàn)報道。本研究選用富褐煤20565936.1937.319452541163727含木質(zhì)素的核桃殼和褐煤進(jìn)行共液化實(shí)驗,詳細探12實(shí)驗裝置討了核桃殼煤質(zhì)量比原料溶劑質(zhì)量比反應溫度、本實(shí)驗所用反應器為大連自控設備廠(chǎng)制造的反反應時(shí)間催化劑等對核桃殼和煤共液化反應的影應釜,容積為100mL,帶電磁攪拌和冷卻裝置,設計響壓力為24MPa,設計溫度為350℃。反應釜的溫度、1實(shí)驗轉速升溫速率等均由GCF控制器控制。13實(shí)驗方法11材料中國煤什飛殼粉及催化劑)、收稿日期:2000608CNMHG基金項目:國家自然科學(xué)基金(30800;教育部科學(xué)技術(shù)研究重點(diǎn)項目(xT國浮⊥子垂重(aA465);云南省杜會(huì )發(fā)展科技計劃(20070068M)通訊作者:鄭志鋒(1975一),男,博士、副教授、碩土生導師,主要從事生物質(zhì)轉化方面的研究與教學(xué)工作。加 hengzhifeng@ swfu.edu,cn期鄭志鋒等:殼類(lèi)生物質(zhì)與煤共液化的研究47四氫萘(溶劑)加入高壓反應釜內,用氮氣置換空氣。反應過(guò)程中攪拌轉速為300r/min。反應結束后,用冷以10℃/min的加熱速率升至所需反應溫度并恒溫,在卻水急冷至室溫。取出高壓反應釜內反應所得的固此溫度下反應一段時(shí)間(恒溫時(shí)間定義為反應時(shí)間),液混合物進(jìn)行分離分析,具體過(guò)程如圖1四氫萘溶劑四氫呋喃正已烷氣體產(chǎn)物核桃殼液體產(chǎn)物→)高壓反應釜抽提、分離液體產(chǎn)物固體殘渣固體殘渣不溶物可溶物瀝青烯+前瀝青烯計算轉化率圖1核桃殼與煤共液化反應流程示意圖Fig 1 Block diagram for co-liquefaction of walnut shell and coal14分析方法3)氣體產(chǎn)率( Yield of gas)G:用四氫呋喃將反應釜內液化反應所得液固混合G(%)=Wo+C+s"0%(3)物移至濾紙筒內過(guò)濾,將濾液和濾紙筒分別放于250mL磨口燒瓶和索氏抽提器內回流抽提,水浴溫或:度為80~90℃,抽提時(shí)間48h,直至回流液無(wú)色。濾G(%)=1-X-A-0紙筒內的四氫呋喃不溶物(殘渣)于通風(fēng)櫥內自然揮4)油產(chǎn)率( Yield of oil)O發(fā)后,于80℃真空烘箱中烘干25h,稱(chēng)量并計算反0(%)=1-X-A-G應轉化率X。用旋轉蒸發(fā)器去除抽提液中四氫呋或:喃,則此抽提液即為液化產(chǎn)品和四氫萘溶劑的混合0(%)液。液相產(chǎn)物分兩部分,即四氫呋喃可溶但正己烷0+C×10%不溶物(定義為瀝青烯+前瀝青烯)和四氫呋喃與正式中,W核桃殼粉質(zhì)量,g;C—煤粉質(zhì)量,己烷中均可熔物(定義為油)。R?!獮V紙筒內的四氫呋喃不溶物(殘渣)質(zhì)量,g;取蒸去四氫呋喃的抽提液3g(精確到00010,W—四氫呋喃可溶但正己烷不溶物(瀝青烯與前加入200m正已烷攪拌30min靜置24h,過(guò)濾,旋瀝青烯)質(zhì)量,g;S—加入反應的四氫萘溶劑質(zhì)轉蒸發(fā)去除濾液中的正己烷。將帶有沉淀(瀝青烯量,g;L—液化產(chǎn)品和四氫萘溶劑混合液質(zhì)量,g+前瀝青烯)的濾紙置于80℃真空烘箱中烘干2結果與討論15h,稱(chēng)量此沉淀物即可計算瀝青烯與前瀝青烯的2.1核桃殼與煤質(zhì)量比的影響轉化率A。反應轉化率及產(chǎn)物產(chǎn)率具體計算如下:取核桃殼與煤的總質(zhì)量為5g,四氫萘溶劑:1)反應轉化率( Total conversion)x:反應溫度300℃,反應時(shí)間30min,在無(wú)催化劑作用≈)瀝青烯與前瀝青烯產(chǎn)率( Yield of aspan么()下考察核桃殼與煤質(zhì)量比分別為1000892X(%)Rox100%W。+Co60/4050/5040/60、2080和0100時(shí)的共液化效果,me&結果中國煤化工eneCNMHG液化反應時(shí),當核桃殼質(zhì)量占多數時(shí),隨著(zhù)煤加入比例的增加,共液化A(%)=vn+Cm×x10%448太陽(yáng)能學(xué)報32卷→轉化率(X)由圖3可知,原料溶劑的質(zhì)量比對共液化效果瀝青烯+前瀝青烯產(chǎn)率(A)氣體產(chǎn)率(G)影響很大,隨著(zhù)四氫萘溶劑的增加,共液化轉化率和一油產(chǎn)率(O油產(chǎn)率提高,氣體產(chǎn)率逐漸降低。四氫萘本身就是一種很好的液化供氫溶劑,能較好地溶解生物質(zhì)與煤的熱解碎片及提供氫自由基,促進(jìn)液化,并使油產(chǎn)率增加、油產(chǎn)物穩定,但同時(shí)也阻止熱解碎片進(jìn)步裂解為更小的氣體分子,從而使瀝青烯+前瀝青烯產(chǎn)率有所增加、氣體產(chǎn)率降低。因此,本研究取原核桃殼/煤)質(zhì)量比料與四氫萘的質(zhì)量比為1/102.3反應溫度的影響圖2核桃殼/煤質(zhì)量比與轉化率的關(guān)系分別取核桃殼與煤質(zhì)量各2.5g,四氫萘溶劑Fig50g,反應時(shí)間30min,在無(wú)催化劑作用下考察反應溫shell coal and conversion of products in co-liquefaction效果顯著(zhù)提高,主要表現在轉化率和油產(chǎn)率的提高;度為240、260、280、300、320和340時(shí)的共液化效當煤加入比例超過(guò)50%時(shí),其轉化率迅速降低,褐果,結果如圖4。亠轉化率(X煤?jiǎn)为氁夯瘯r(shí),實(shí)驗條件下的轉化率已降至很低80瀝青烯前瀝青烯產(chǎn)率(A(3.35%),油產(chǎn)率幾乎為零。這主要由于核桃殼富e70}氣體產(chǎn)率(G)60}+油產(chǎn)率(O含的木質(zhì)素具有較高的氫碳比,其裂解產(chǎn)生的活化氫與煤裂解產(chǎn)物迅速反應形成穩定的液相產(chǎn)物,從而達到降低共液化所需氫耗、提高油產(chǎn)率和液相產(chǎn)品品質(zhì)的目的。這說(shuō)明核桃殼與煤的共液化具有明顯的協(xié)同作用,也說(shuō)明富含木質(zhì)素核桃殼的加入,對煤的液化具有明顯的促進(jìn)作用,這結果與前人研究反應溫度℃結果一致3-B。當核桃殼與煤質(zhì)量比為50/50時(shí),共轉化率達7392%,油收率可達46.22%4反應溫度與轉化率的關(guān)系22原料/溶劑質(zhì)量比的影響lationship between reaction temperature andconversionproducts in co-liquefaction分別取核桃殼與煤質(zhì)量各2.5g,反應溫度從圖4可看出隨著(zhù)反應溫度的升高,共液化轉300℃,)反應時(shí)間30mm,在無(wú)催化劑作用下考察原料化率、油產(chǎn)率瀝青烯+前瀝青烯產(chǎn)率和氣體產(chǎn)率均與四氫萘溶劑質(zhì)量比分別為12、15、18和0時(shí)逐漸增加說(shuō)明溫度越高,裂解反應越激烈。在反應的共液化效果,結果如圖3溫度較低時(shí),主要發(fā)生的是原料裂解為大分子的瀝轉化率(X)80→瀝青烯+前瀝青烯產(chǎn)率(A)青烯+前瀝青烯的反應;隨反應溫度的升高,瀝青烯70氣體產(chǎn)率(G)和前瀝青烯進(jìn)一步裂解為更小的自由基碎片,由于→油產(chǎn)率(O)反應體系有自由H存在,從而使其穩定生成油類(lèi)物質(zhì)這一反應隨溫度升高而加快,從而生成更多的油,并產(chǎn)生較多氣體。當反應溫度升高到一定值后(在本實(shí)驗條件下約為300℃),大部分生物質(zhì)已發(fā)生了降解反應,活化氫供應減少,原生成瀝青烯和前瀝青烯和油分子的自由基碎片將會(huì )發(fā)生縮聚反應,原料溶劑)質(zhì)量比使得V凵中國煤化工始有所下降氣體圖3原料/溶劑質(zhì)量比與轉化率的關(guān)系收率CNMHG至300℃時(shí)共液Fig 3 The relationship between mass ratio of raw化的油收率可增加30.91%。這說(shuō)明核桃殼的存erials/solvent and conversion of products in co-liquefactic在,可使共液化在比較溫和的條件下進(jìn)行到較好程4期鄭志鋒等殼類(lèi)生物質(zhì)與煤共液化的研究度。因此,取反應溫度300℃較適宜。從圖5可以得出,轉化率、油收率隨反應時(shí)間的24反應時(shí)間的影響增加不斷增高,尤其是在20~30min時(shí)顯著(zhù)提高。分別取核桃殼與煤質(zhì)量各2.5g,四氫萘溶劑瀝青烯和前瀝青烯的得率隨反應時(shí)間的增加而增50g,反應溫度300℃,在無(wú)催化劑作用下考察反應時(shí)加氣體得率隨反應時(shí)間的增加而減少。但隨著(zhù)時(shí)間為5、10、15、20,30和60mn時(shí)的共液化效果結果間進(jìn)一步延長(cháng)轉化率和油收率反而略有減少,瀝青如圖5。烯和前瀝青烯得率提高。這是因為體系中油分子濃→轉化率(X80瀝青烯+前瀝青烯產(chǎn)率(A)度的增加,將會(huì )使油分子二次反應的影響變得顯著(zhù),→氣體產(chǎn)率重聚為大分子物質(zhì),同時(shí)析出小分子的氣體。因→油產(chǎn)率(此,取反應時(shí)間30mn較為適宜。25催化劑的影響催化劑對液化轉化率及產(chǎn)物組成的影響很大。本研究分別以生物質(zhì)和煤直接液化常用的碳酸鈉和硫鐵礦為催化劑,取核桃殼與煤質(zhì)量各25g,四氫萘溶劑50g,催化劑用量05g,反應溫度300℃,反應反應溫度C時(shí)間30min,探討催化劑對共液化的影響。結果如圖5反應時(shí)間與轉化率的關(guān)系表2Fig. 5 The relationship between reaction time and從表2可知,碳酸鈉與硫鐵催化劑對核桃殼與conversion of products in co-liquefaction煤的共液化均具有明顯的催化作用,轉化率明顯提表2催化劑對核桃殼與煤共液化的影響Table 2 Efects of the catalyst on the co-liquefaction of walnut shell and coal催化劑種類(lèi)轉化率(X)%氣體產(chǎn)率(G)%瀝青烯+前瀝青烯產(chǎn)率(A)%油產(chǎn)率(O)/%碳酸鈉1.597.33硫鐵催化劑652.3277.90無(wú)催化劑73.92高。在催化劑作用下,能促使瀝青烯+前瀝青烯進(jìn)1/0,反應溫度為300℃和反應時(shí)間為30mn時(shí),可一步裂解為油和氣體,從而使油產(chǎn)率和氣體產(chǎn)率大得到較好的共液化效果;幅提高。同時(shí)由于碳酸鈉對核桃殼生物質(zhì)組分和硫3)碳酸鈉與硫鐵催化劑對核桃殼與煤的共液化鐵催化劑對煤組分的催化作用,生物質(zhì)裂解碎片和均具有明顯的催化作用,且在催化劑作用下核桃殼煤裂解碎片更多地進(jìn)入液相中,進(jìn)而使共液化中核與煤共液化的協(xié)同作用更加明顯轉化率和油產(chǎn)率桃殼與煤組分的協(xié)同作用更加明顯??傻玫酱蠓岣?。3結論參考文獻]1)富含木質(zhì)素的核桃殼與煤共液化時(shí),兩者之[1 Biagini E, Lippi F, Petarca L,tal. Devolatilization rate of間存在明顯的協(xié)同作用,兩者共液化能夠有效促進(jìn)biomass and coal-biomass blend: An experimental investiga-液化轉化,提高油收率,且該協(xié)同作用在300℃時(shí)尤ion[J].Fuel,2002,81(8):1041-1050.為顯著(zhù);[2] Jones JM, Kubacki M, Kubica K, et al. Devolatilisationcharacteristics of coal and biomass blends[J]. Joumal of An-2)在無(wú)催化劑作用下,隨著(zhù)共液化體系中煤質(zhì)量比例的增加液化轉化率和油產(chǎn)率先增加后降低, 37 ytical and Applied Pyrolysis,20,04(12):502-51Turkish lignite with a當核桃殼煤質(zhì)量比為50/50時(shí),液化效果最好;隨著(zhù)中國煤化工 of coprocessing on原料/四氫萘溶劑比例的增加反應溫度的提高和反CNMHGtemperatures[J].Fuel應時(shí)間的延長(cháng),液化轉化率和油產(chǎn)率增加。當核桃Processing Technology, 2000, 64(1): 47-55殼煤質(zhì)量配比為5050,原料/四氫萘溶劑比例為[4] Karaca k, Bolat E. Coprocessing of a Turkish lignite with a太陽(yáng)能學(xué)報32卷cellulosic waste material 2. The effect of coprocessing on liqions[J].Fuel,191,70(12):1433-1438uefaction yields at different reaction pressures and[11] Akash B A, Muchmore C B, Koropchak J A, et al. Investi-nite ratios[ J]. Fuel Processing Technology, 2002, 75(2)gations of simultaneous coal and lignin liquefaction: Kinetic109116studies[ J]. Energy& Fuels, 1992, 6(5):629634[5]徐潔,李庭琛,顏涌捷,等,煤與木屑共液化[.[2] Akash B a, Muchmore B, Lalvam s B. Coliquefaction of燃料化學(xué)學(xué)報,199,27(4):328-34coal and newsprint-derived lignin[J]. Fuel Processing Techn-[5] Xu Jie, Li Tingchen, Yan Yongle, et al. Coliquefaction ofology,199,37(3):203-210.oal and sawdust[J]. Joumal of Fuel Chemistry and Technol- [13] Kim J W, Lalvani S B, Akash B A. Coliquefaction of coal1999,27(4):328334and black liquor[ J]. Korean Joumal of Chemical Engineer-[6】] Wang Yang,DZhengwei, et al. Co-lique-ing,1995,12(5):582-585faction of enriched coal and maceral constituents and sawdust[14]鄭志鋒,鄒局春,花勃,等.核桃殼化學(xué)組分的研究[J]. The Chinese Joumal of Process Engineering,2002,2[J.西南林學(xué)院學(xué)報,2006,26(2):3336(2):8-12[14] Zheng Zhifeng, Zou Juchun, Hua Bo, et al. Study on the[7] Coughlin R W, Davoudzadeh F. Coliquefaction of lignin andconstituents of walnut shell[J]. Journal of Southwest Forestrybituminous coal].Fe,1986,65(1):95-106.Cleg,2006,26(2):33-36.[8] Altieri P, Coughlin R W. Characterization of products formed [15] Vasilakos N P, Austgen D M. Hydrogen-donor solvents in bi-during coliquefaction of lignin and bituminous coal at 400Comass liquefaction[J]. Industrial Engineering Chemistry[J]. Energy Fuel,1987,1(3):253256Process Design and Development, 1985, 24(2): 304-311[9] Lalvani S B, Muchmore C B, Korochak J A, et al. Lignin- [16] Song C S, Hanaoka K, Nomura M. Short contact-time Pyro-augmented coal depolymerization under mildlytic liquefaction of Wandoan subbituminous coal and catalytictions[ J]. Energy& Fuels, 1991, 5(2):347--352upgrading of the SCT- SRC[ J]. Fuel, 1989, 68(3):287-[10] Lalvani S B, Muchmore C B, Koropchak J A, et al.Coelliquefaction in lignin-derived liquids under low severity condi-CO-LIQUEFACTION OF SHELL BIOMASS AND COALZheng Zhifeng", Pan Jing, Huang Yuanbo, Jiang Jianchun, Dai Weidi2(1. Key laborutory of Forest Resources Conservation and Use in the Southest Mountains of China( SWFU), Ministy of EoLaboratory for Chemica Utilimtion Biomass; Key and Open Lab. on Forest Chemioal Engineering, SFA, Nanying 210042, Chin/Southest Forestry Uniersity, Kuming 650224, China: 2. Institute of Chemical Industry of Foret Products, CAF; Nationad engineerinAbstract: The co-liquefaction of walnut shell and coal in 1, 2, 3, 4-tetrahydronaphthalene was investigated. The influenc-es of walnut shell/coal mass ratio, mixture of walnut shell and coal/ solvent mass ratio, reaction temperature, reaction timeand the catalyst on the conversion and yield of products were studied. The results showed that when the optimum liquefaction conditions were camied out with walnut shell/coal mass ratio of 50/50, the mixture/ solvent mass ratio of 1/10. reaction temperature of 300C, reaction time of 30min and without catalyst, the conversion and yield of oil were 73.92%and 46.22%, respectively. Both catalysts of sodium carbonate and ferric sulfide( Fes. )had an obvious effect on the co-liquefaction of walnut shell and coal. And these catalysts could improve the conversion and oil yield effectively. Therewas an obvious synergy in the co-liquefaction, and the synergy became more markedly by using sodium carbonate and fer-ric sulfide as the中國煤化工Keywords: walnut shell; coal; co-liquefactionCNMHG

論文截圖
版權:如無(wú)特殊注明,文章轉載自網(wǎng)絡(luò ),侵權請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習使用,務(wù)必24小時(shí)內刪除。
欧美AAAAAA级午夜福利_国产福利写真片视频在线_91香蕉国产观看免费人人_莉莉精品国产免费手机影院