排放口污水處理率的優(yōu)化計算 排放口污水處理率的優(yōu)化計算

排放口污水處理率的優(yōu)化計算

  • 期刊名字:水利學(xué)報
  • 文件大?。?82kb
  • 論文作者:薛聯(lián)青,陸桂華
  • 作者單位:河海大學(xué)
  • 更新時(shí)間:2020-07-09
  • 下載次數:次
論文簡(jiǎn)介

水利學(xué)報2002年7月SHUILIXUEBAO文章編號: 0559-9350 (2002) 07-0053-04排放口污水處理率的優(yōu)化計算薛聯(lián)青',陸桂華'《1.河海大學(xué)水環(huán)院江蘇甫京210098)摘要:依據文中建立的河道水質(zhì)模型,以水環(huán)境目標為約束,污水處理費用作為排放口污水處理控制方案優(yōu)選的評價(jià)依據,提出了排放口污水處理綜合規劃方程的拉格朗日乘子求解方法,并應用于淮河流城某區城的污水治理規劃。計算結果表明該方法較傳統規劃方程的數值求解及懲罰函數法操作簡(jiǎn)便,對央策者進(jìn)行排放口污水處理控制方案的初選具有指導意義。關(guān)鍵詞:污染控制;排放口;解析方法;優(yōu)化;數值計算.中圈分類(lèi)號: X522文獻標識碼: A由于工業(yè)與城市經(jīng)濟的高度發(fā)展,工業(yè)廢水和生活污水日益增加,大量的廢棄物流人江河朔泊,造成了嚴重的水體污染,河流的環(huán)境承載力下降。與此同時(shí)各污水處理廠(chǎng)的污水處理費用也逐年增高。如何合理的配置污水處理廠(chǎng),減少整個(gè)區域處理運行費用,就要求我們用系統分析的方法,在河.流水質(zhì)狀況模擬的基礎上,進(jìn)行排放口優(yōu)化處理計算。排放口優(yōu)化處理問(wèn)題是水污染控制規劃計算中常見(jiàn)的一種,但在實(shí)際應用中,對污水處理率的優(yōu)化計算通??尚纬赏挂巹潌?wèn)題,尤其當有多約束條件時(shí),若采用簡(jiǎn)單的解析算法求解,即可避免繁雜的數值計算。同時(shí),在-定程度上也避免了數值迭代計算誤差所引起的處理效率的不合理現象。1處理率優(yōu)化計算 的解析方法設河道的設計流量為Qo,上游來(lái)水中的污染物濃度為Co, 河道斷面水質(zhì)標準為C',第i個(gè)排放口排放的污水流量為qi,污水初始濃度為l,處理率為n,則相應的污水處理費用為Z=aqf+ar q7。當河流中水質(zhì)變化符合Streter-Phelps 模型!"1所描述的規律時(shí),可建立排放口污水處理率的最優(yōu)化模型表示如下:minZ= 2z= b。+ bini+b2≌+...+ b,公.s.t.a1179 + a27 + "aIn7n≤c -d= cia217: + az2 +"*a2n7n≤c'-dx=ci(1)a.s7i + 0272 + .'.m7n≤c'-d, = c;式中:b,(i=0,1,.,n)與q,an,ar及β值有關(guān);ag(i=1,2,.,n;j=1,2,.,n)與Qo,q., 4;及耗氧系數k有關(guān); d, 是與ag相關(guān)的常數項; C* 為監測斷面的水質(zhì)約束; Z為所有排放口污水處理的總費用。式(1)中的目標函數是二次,約柬條件呈線(xiàn)性,因此屬于非線(xiàn)性規劃中的凸規劃類(lèi)型["。收稿日期: 20-191作者藺介:薛聯(lián)青(1973-),女,新疆石河子人,博士研究生,主要從事水資源規劃和環(huán)境保護的研究。-53-中國煤化工TTTTJMYHCNMHG.1.1懲罰函數法構造懲罰函數[|如下:φ= b。+ 2bp+ r{Z[max(0,aun +ap+-+an.-ci)}(2)可將式(1) 的有約束的規劃問(wèn)題變成無(wú)約束的規劃問(wèn)題。在式(2) 中,y稱(chēng)為懲罰因子,為一取值任意大的正數。由式(2) 知,只要有一個(gè)約束條件不滿(mǎn)足,φ將趨于無(wú)窮大,而在約束條件都滿(mǎn)足的情況下,φ值與z值相同,故使ψ有最小值的處理率組合便是使z有最小值,且又滿(mǎn)足約束條件的處理率組合。對于式(2)中的辦分別求導,并考慮導數為零及不滿(mǎn)足約東的情況得:里= 2b,7 +2rZan(anη +oa72 +. +a7.-ci) =0呢= 2b.272 +27 Za(auq +a2+.+awη.-ci)=0(3)器=26. +22_a(an+-+on-ci)=0整理后并注意到γ→∞,得: Sam + 2aua72+-+ 2auan7 = Zcian; Sana7i +二咖7+--+ Zaawn. = ..a..... Eana7+ 2anaB+-+ Ean = Ecia.Z Sana" Zanan式(1)是一個(gè)線(xiàn)性方程組,其解為:q。= -;A =Zana Z略- 2oa....... =l Sanan Sa-.J「EaEana. Zcian". Sana.Eanaa 2哈-. Zcian". Zan .則由上述構造的懲罰函數即可求解排放口污水處理的效率l Sanan Zan."" 2cian...2a2J和污水處理費用。1.2 拉格朗日乘子法 由于在水污染控制中,通常選擇具有代表性,對河流水質(zhì)起主要影響作用的污染因子作為約束。鑒于淮河污染主要表現為有機污染,因此本文選取化學(xué)耗氧量COD≤15mg/1 (以.COD.依度表征)和溶解氧DC≥5ng/l作為河流水質(zhì)的衡量指標和約束條件!1,以整個(gè)河段上所有排放口污水處理的費用之和為目標函數,采用拉格朗日乘子法,將有約束的極值問(wèn)題轉化為無(wú)約束極值進(jìn)行求解。該方法較前文中的懲罰函數法及數值求解方法簡(jiǎn)便,并易于操作。根據河流COD和DO的響應矩陣U和V,及河流各斷面的COD、DO約柬向量L'和0°,并設排放口最大允許輸人河流各斷面的COD濃度向量為L(cháng),河段中的COD濃度的變化用S-P模型所描述。UL+m≤L°則在滿(mǎn)足約柬T的條件下, 根據方程(1), 建立以》為變量的污水處理的費用函數z,并且求出η. 使Z為最小,即滿(mǎn)足minZ=bo+br亦+bz≠+...+ b.好.以排放口的污水處理率為變量,建立各個(gè)斷面的約束條件。第1控制斷面: c,= Colo+Lh9i一知≤c'; C"。= Coe%。第2控制斷面: C,=Q.+gC, (00+9) +6292 (1- 2) .: C*; C'= Ce-1. ....第i控制斷面:C=Qo+g:+92C".. (+..+..) +6.9. (1-N)≤c;C'= C..eQo+q1+q2+..+ qs將約束條件轉換為表達式: h(》)=0 (i=1, 2, .,n)的形式。處理效率7是可以用排放口54 一中國煤化工MHCNMHG“-----T蔓u污水的初始濃度l所表示。建立費用函數的拉格朗日函數L (η, 2) = C+2,hj (η) + λrhz (η)+..+λ.h. (η)。其穩定點(diǎn)(η", λ")應滿(mǎn)足下列方程:VqL(n",i")= VJ(n")+A; Vh(η°)+. + λiVh,(q")+.. + a:Vh.(7") = 0.若穩定點(diǎn)存在,則穩定點(diǎn)即為所求費用函數的最優(yōu)解。2排放口污水處理的優(yōu)化計算根據淮河流域某區域的地形、地貌特點(diǎn)以及原有及擬建排放口的情況,沿河段設置5個(gè)集中的排放口。擬規劃的5個(gè)排放口在預測年的排污量q分別為0.255、0.939、1.098、 7.529和7. 665m'/a,排放口污水初始COD依度L (i=I, 2, .5)分別為347.8、36.17、 28.73、 88.34 和140.1mg/1。溶解氧Do濃度分別為6.17、7.60、 9.12、4.52 和4.94ng/1。為了計算簡(jiǎn)便,本文僅采用COD與DO作為主要約束因子,選擇來(lái)水保證率為P=75%,流量Q=55m'1s,河流流速v=5.5km/d。根據河流各排放口的位置進(jìn)行概化,計算水流流經(jīng)各河段的時(shí)間分別為: rp.=1.0 (d),T.2=2.5 (d); T3=1.5 (d), T4=2.7 (d), T4_s=0.5 (d)。同時(shí)其非線(xiàn)性的污水處理費用目標函數為: Z;=200q." + 1000qi*n.式中: 2.為污水處理的費用; q為污水處理的規模; y為污水處理的效率。由此可確定各排放口的費用函數分別為z =67.0+335.1積,z= 190.2+ 950.9站,z, =215.5+ 1077.7樂(lè ),44= 1005.6+ 5028.0m,Zs = 1020.0 +5100.0ξ .由于費用函數是非線(xiàn)性函數,因此在進(jìn)行數值求解時(shí),為了使線(xiàn)性函數能較好地代表原函數,通常采用分段線(xiàn)性化方法,即將污水處理效率分成幾個(gè)區間,每一區間用一線(xiàn)性函數代表原函數。不失一般性,假定在0≤η<1的區間里,對費用函數分三段實(shí)行線(xiàn)性化處理,分別計算各段的線(xiàn)性斜率",效率分級為: 0≤劑≤0.3, 0.3≤取≤0.85, 0.85≤q≤1 (i=1, .5),對所建立的規劃模型分別用數值及解析方法進(jìn)行污水處理效率和處理費用的優(yōu)化計算。2.1用敷值方法求解模型若淮河淮南段河流水質(zhì)監測斷面均采用國家三級標準作為約束控制,則河段上如果設置s個(gè)污水排放口,則計算機編程進(jìn)行數值求解可得s個(gè)排放口污水處理率及其各自的污水處理費用,計算結果如表1所示。累計各個(gè)排放口的污水處理費用,可計算得當設有5個(gè)污水處理廠(chǎng)時(shí),所設定的各排放口污水處理的總費用約為5919.75萬(wàn)元。表」5個(gè)捶放口的污水處理費用計算標號液量/ (Vr)膿度1 (my/L)處理率(%}費用/萬(wàn)元斷面COD/ (mg/L)斷面DO/ (nm/L)0.2550347.800.000.09.455.860.939036.07 .0.5.786.431.098028.734.567.087.529088.34 .49.493261.335.647.687.6650140.10 .29.982658.4215.001.35,2.2規劃模型的解析求解分析設各排放口初始污水的 COD濃度為1,并且認為河段中的COD濃度的變化可用-級動(dòng)力學(xué)反應方程描述,則可以建立排放口處理費用的目標函數: Z= 2z = 200q%*+ 00qm..目標函數及約柬條件中的排放口污水處理效率》可以排放口污水初始濃度l表示,即處理后輸人河流各斷面COD濃度為L(cháng)= (1-η) I,采用拉格朗日乘子法進(jìn)行求解,可求得5個(gè)集中排放口的污水處理效率為0.065, 0.019, 0.023, 0.458, 0.248, 總的污水處理費用約為5552萬(wàn)元,與懲罰函數法計算結果相一致,并與數值求解計算結果相接近。鑒于第四與第五排放口相距較近,合并后新廠(chǎng)的污水處理流量為15. 194m'/s,排放污水的初始CoD濃度為114. 45mg/L,溶解氧濃度DO為4.731m/L.合并計算得污水處理費用函數為z. = 1763.455 -中國煤化工YHCNMHG+8817弱,同法可求得各排放口污水處理的效率及費用,并將數值計算結果列于表2。由結果可看出,當僅設4個(gè)污水處理廠(chǎng)時(shí)的污水處理的大致費用為3733.08萬(wàn)元。較5個(gè)排放口的污水處理費用大大降低。表2 4個(gè)排放口的污水處理費用計算標號流量/ (ts)依度/ (mg/L)處理事(%)費用1萬(wàn)元斷面COD/ (mg/L)斷面DO/ (ng/L)0.2550347.800.009.425.840.939036.070.5.726.411.098028.734.507.06I5. 1940114.45 .44.493733.0815.007.472.3結果分析若對模型 的求解采用上節所介紹的懲罰函數法以及拉格朗日乘子法進(jìn)行求解,各排放口的條件和約束條件均不變??捎嬎愕贸? (1)對于5個(gè)排放口時(shí),污水處理效率分別為: 0.065,0.019,0.023, 0.458, 0.248,總的污水處理費用大約為5552萬(wàn)元。(2) 對于4個(gè)排放口時(shí),計算得處理效率分別為: 0.066, 0.019, 0.025, 0.42, 污水處理的總費用大約為3749萬(wàn)元。4結論通過(guò)以上實(shí)例計算表明,拉格朗日乘子法與數值求解所求得的結果基本相近,并與懲罰函數法計算結果相一致。由于在數值求解中對費用函數進(jìn)行了線(xiàn)性化近似,并且在計算選代中產(chǎn)生一定的誤差,由此導致了與解析求解的結果的偏差。計算表明,文中拉格朗日乘子法具有計算簡(jiǎn)便的特點(diǎn),尤其在做初步規劃時(shí),可以較為方便地做出估算,對選擇方案具有指導意義。同時(shí)在對多約束條件的選擇上具有可選擇性,并且在有多約束時(shí),拉格朗日的乘子法求解較傳統的數值求解及懲罰函數法易于操作,解算簡(jiǎn)便,特別有利于規劃人員的設計計算。參考文獻:[1]付國偉,程聲通.水污染控制系統規劃[M].北京:猜華大學(xué)出版社,1985.[2]黃平,排放口污水處理宰優(yōu)化計算的解析方法[J].環(huán)境科學(xué)與技術(shù),1997.[3]李維錚,等.運籌學(xué)[M].北京:清華大學(xué)出版杜,1982.[4]傅國偉.河灌水質(zhì)數學(xué)模型及其模擬計算[M]. 北京:中國環(huán)境科學(xué)出版社,1987.Optimization of treatment rate for discharged urban wastewaterXUE Lian-qiog' ,LU Gui-hua'(1. Hohai Unieriy, Narnjing 210098, China)Abstract: On the basis of river water model established, the Lagrange muliplier method for solving thecomprehensive planning equation of treatment rate for dischanged urban water is proposed. In this methodthe water environment is 8el as the objective constraint and the co8t of treatmnent is referred 88 the 88-ment slandard for optimization of pollution control. The method is applied to the wastewaler dischargeplanning of a river section in Huaihe River. It's indicated thal the method is suitable for the contralscheme selection to decision-makers .Key words: pllution control; wastewaler dischange outlet; treatment rate; optimization一56一中國煤化工MHCNMHG

論文截圖
版權:如無(wú)特殊注明,文章轉載自網(wǎng)絡(luò ),侵權請聯(lián)系cnmhg168#163.com刪除!文件均為網(wǎng)友上傳,僅供研究和學(xué)習使用,務(wù)必24小時(shí)內刪除。
欧美AAAAAA级午夜福利_国产福利写真片视频在线_91香蕉国产观看免费人人_莉莉精品国产免费手机影院