

褐煤自燃特性熱重實(shí)驗及動(dòng)力學(xué)分析
- 期刊名字:熱力發(fā)電
- 文件大?。?74kb
- 論文作者:張斌,劉建忠,趙衛東,袁紹,王智化,周俊虎,岑可法
- 作者單位:浙江大學(xué)能源清潔利用國家重點(diǎn)實(shí)驗室,西安熱工研究院有限公司
- 更新時(shí)間:2020-08-31
- 下載次數:次
第43卷第6期熱力發(fā)電Vol 43 No 62014年6月THERMAL POWER GENERATIONJun.2014褐堞旬燃特性熱重實(shí)驗及動(dòng)力學(xué)分析張斌1,劉建忠,趙衛東2,袁紹1,王智化,周俊虎1,岑可法1(1.浙江大學(xué)能源清潔利用國家重點(diǎn)實(shí)驗室,淅江杭州310027;2.西安熱工研究院有限公司,陜西西安710032)[摘要]對錫盟褐煤和印尼褐煤進(jìn)行熱重實(shí)驗,并與大同煙煤、平頂山煙煤、神華低灰煙煤、陽(yáng)泉無(wú)煙煤等煤樣進(jìn)行了對比。通過(guò)分析熱重曲線(xiàn),將煤從吸氧氧化到燃燒的整個(gè)過(guò)程分為物理吸附、水分蒸發(fā)失重、吸氧增重、煤受熱分解、燃燒和燃盡6個(gè)階段,并得到各階段的特征溫度點(diǎn)。結果表明,2種褐煤的自燃傾向明顯大于其他4種煙煤和無(wú)煙煤。通過(guò) Coats-Redfern積分法研究煤樣的氧化燃燒動(dòng)力學(xué)特性,計算煤樣的活化能,得到6種煤的氧化過(guò)程屬于一級化學(xué)反應,且褐煤自燃傾向性較強;煤樣粒度越小,褐煤自燃傾向性越強;隨著(zhù)氧氣濃度的增大,煤樣更易自燃。[關(guān)鍵詞]褐煤;熱重實(shí)驗;特征溫度;自燃傾向性;動(dòng)力學(xué)分析;活化能[中圖分類(lèi)號]TQ530[文獻標識碼]A[文章編號]1002-3364(2014)06-007106[DOⅠ編號]10.3969/issn.1002-3364.2014.06.071Thermogravimetric experiments and dynamic analysison spontaneous combustion characteristics of ligniteZHANG Bin, LIU Jianzhong, ZHAO Weidong, YUAN Shao'WANG Zhihua, ZHOU Junhu, CEN Kefal(1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027,China2. Xian Thermal Power Research Institute Co. Ltd Xian 710032, China)Abstract: Thermogravimetric experiments on Ximeng lignite and Indonesia lignite were carriedout, and the results were compared with that of the Datong bituminous coal, Pingdingshan bituminous coal, Shenhua low ash bituminous coal and Yangquan anthracite. By analyzing the Tg andDTG curves, the whole process from coal oxidation to coal combustion could be divided into sixstages: physical adsorption, water evaporation with losing weight, absorption of oxygen with in-creasing weight, thermal decomposition, combustion and burning out. The characteristic temperatures of each stage were obtained. The results show that, the tendency of spontaneous combustionf the above two lignite was significantly obvious than that of the other four bituminous coal andanthracite Coats-Redfern integral method was used to analyze the samples oxidative combustiondynamic characteristics. Moreover, activation energy of the six coal samples was calculated to ana-lyze the tendency of spontaneous combustion of coal. The calculation results show that, the oxida-tion process of the six coal samples belonged to the first-order reaction, and the tendency of spontaneous combustion of the two lignite coal was greater. The tendency of spontaneous combustionof Ximeng lignite was affected by particle size and oxygen density. analysis shows that: the smal-ler the particle size, the stronger the tendency of spontaneous combustion; the greater the oxygendensity, the stronger the tendency of spontaneous combustion in gener收稿日期:201306-05基金項目:國家重點(diǎn)基礎研究發(fā)展計劃基金資助項目(973計劃)(2012CB214906)作者簡(jiǎn)介:張斌(1989—),男,浙江溫州人,碩士研究生,研讀方向為熱能工程H中國煤化工CNMHGE-mail: zhangbin8959@163. cor熱力發(fā)電2014年Key words: lignite; thermogravimetric analysis; characteristic temperature; the tendency of spontaneous combustion; dynamic analysis; activation energy目前,低價(jià)煤褐煤由于碳化程度低,反應活性算、煤氧復合活化能、井下自燃指標氣體分布預警以好,而被廣泛作為高效清潔燃燒能源,但是褐煤易自及熱分析、紅外、色譜、SEM、XRD、XPS多種角度和燃。迄今為止,煤自燃的理論有黃鐵礦導因說(shuō)、細菌手段研究煤在低溫氧化過(guò)程中結構和性質(zhì)的變導因說(shuō)、酚基導因說(shuō)、煤氧復合學(xué)說(shuō)、自由基作用學(xué)化4。本文采用熱重分析法研究錫盟褐煤、印尼褐說(shuō)、電化學(xué)作用學(xué)說(shuō)、氫原子作用學(xué)說(shuō)、基團作用理煤、大同煙煤、平頂山煙煤、神華低灰煙煤、陽(yáng)泉無(wú)煙論等。但對于煤自燃的原因、機理和反應歷程仍未煤的熱重曲線(xiàn)和數據,并進(jìn)行動(dòng)力學(xué)計算,得到各煤見(jiàn)定論[13。被廣泛接受的煤氧復合理論認為,煤的種的自燃傾向性自熱與自燃是多因素作用的復雜物理化學(xué)過(guò)程。煤自燃的主要原因是低溫下煤與空氣中的氧相互作1實(shí)驗條件用,導致煤緩慢氧化并釋放熱量,在適宜蓄熱環(huán)境采用錫盟褐煤、印尼褐煤、大同煙煤、平頂山煙中,熱量積累使煤溫不斷上升至著(zhù)火點(diǎn)后自發(fā)燃燒。煤、神華低灰煙煤、陽(yáng)泉無(wú)煙煤δ種煤樣,其原煤煤對此,可通過(guò)煤的顯微巖相組分低溫氧化特性、低溫質(zhì)分析見(jiàn)表1。在實(shí)驗室空氣氛圍中將煤樣粉碎,氧化過(guò)程熱力學(xué)、計算機輔助分子模型量子模擬計篩分后得到煤粉粒度為100~200m樣品,密封保存。表1原煤煤質(zhì)分析Table 1 Coal quality analysis of the raw coal工業(yè)分析/%煤種/(J·g-1)錫盟褐煤14.9915.6633.5735.781903947.33.350.810.4117.48印尼褐煤9.9117.742.5729.8246.773.67大同煙煤8.550.41平頂山煙煤9048.1625409神華低灰煙煤9.0928.7257.552783068.990.790.4412.05陽(yáng)泉無(wú)煙煤2.0014.1676.2676.871.161.37采用瑞士 METTLER-TOLEDO公司生產(chǎn)的1—大同煙煤2—平頂山煙煤TGA/SDTA851e型熱天平,溫度準確度可達1003—神華特低灰±0.25℃,靈敏度為0.1g。以10℃/min的升溫4一錫盟褐煤3--5—陽(yáng)泉無(wú)煙煤6—印尼褐煤速率將樣品由20℃加熱到800C,樣品用量約5mg。反應氣氛為空氣,流量為50mL/min;保護氣為氮氣,流量為40mL/min。2實(shí)驗結果分析200400600800溫度/℃圖1煤樣TG曲線(xiàn)2.1基于 TG-DTG曲線(xiàn)的自燃傾向分析Fig. 1 TG curves of different coals將煤從吸氧氧化到燃燒的整個(gè)過(guò)程分為物理吸附、水分蒸發(fā)失重、吸氧增重、煤受熱分解、燃燒和燃1—大同煙煤2—早頂山煙煤盡6個(gè)階段煤分子是以碳氫氧及氮原子為葉m3—神華特低灰主體的結構復雜的大分子,其不同結構部位活性不5—陽(yáng)泉無(wú)煙煤一印尼褐煤同。而它們在不同的特定溫度下均能參與煤氧間的化學(xué)吸附和化學(xué)反應,這些溫度即為煤氧化自燃過(guò)程中的特征溫度,因此可以通過(guò)研究特征溫度來(lái)探4006討煤的自燃特性121。6種煤樣的TG和DTG曲線(xiàn)如圖1、圖2所示。中國煤化工CNMHGast coalshttp:www.rlfd.comcnhttp://rlfd.periodicals.net.cn第6期張斌等褐煤自燃特性熱重實(shí)驗及動(dòng)力學(xué)分析由圖1、圖2可見(jiàn),6種煤樣受熱氧化分解曲線(xiàn)到飽和。隨著(zhù)溫度的升高,TG曲線(xiàn)開(kāi)始下降,失重( TG-DTG曲線(xiàn))的趨勢大致相同;不同煤種各個(gè)階速率也開(kāi)始增大。這是由于煤樣中的水分和部分甲段的特征溫度存在差異,錫盟褐煤和印尼褐煤偏向烷、一氧化碳、水汽等氣體揮發(fā)所致。圖2中錫盟褐低溫區,陽(yáng)泉無(wú)煙煤最靠近高溫區,其他3種煙煤處煤DTG曲線(xiàn)在48.3℃時(shí)達到峰谷,該溫度為臨界于中間位置??梢?jiàn),錫盟褐煤和印尼褐煤熱分解反溫度,失重速率為-1.21%/min。臨界溫度越低,應所需溫度較低,較易自燃,而陽(yáng)泉無(wú)煙煤的反應溫煤脫除水分等物質(zhì)的速度越快,煤氧復合開(kāi)始越早,度相對較高,最不易自燃。煤的自燃性越強。繼續升溫,失重速率減小,TG曲圖3為錫盟褐煤溫度低于30℃的TG曲線(xiàn)。線(xiàn)逐漸趨于平緩,在153.3℃左右,錫盟褐煤煤樣剩101.6余質(zhì)量比達到最小值95.3%。此后,小分子裂解速度加快并出現大分子結構斷裂,煤表面出現許多孔隙吸附了大量氧氣,此時(shí)為吸氧增重階段。分析熱重數據得到,在192.5℃左右,增重速率達到最大值0.033%/min,該溫度被稱(chēng)為增速溫度。加熱溫度100.0約為22.5℃時(shí),煤樣開(kāi)始再次失重,到298.3℃時(shí)溫度/C開(kāi)始受熱分解。受熱分解溫度越低,說(shuō)明煤越容易圖3錫盟福煤TG曲線(xiàn)被氧化分解,其自燃傾向性也越大。加熱溫度約為Fig 3 TG curve of the Ximeng lignite345℃達到著(zhù)火點(diǎn)開(kāi)始燃燒,煤樣的失重速率開(kāi)始急劇增加。加熱溫度約為390℃時(shí),反應全過(guò)程中由圖3可見(jiàn),在初始階段錫盟褐煤TG曲線(xiàn)處失重速率達到最大值一5.25%/min,此時(shí)煤分子內于上升趨勢,煤樣質(zhì)量不斷增加在23℃左右物理部發(fā)生劇烈的化學(xué)反應,燃燒速度大大增加。加熱吸附階段結束,質(zhì)量達到最大,此時(shí)質(zhì)量比為溫度約為454.2℃時(shí),失重過(guò)程基本停止,失重曲線(xiàn)101.5%。這是因為在受熱溫度的初始階段,即物理趨于平緩,達到了煤的燃盡溫度,標志著(zhù)煤樣氧化自吸附階段,煤氧復合主要以物理吸附為主,煤的物理燃著(zhù)火過(guò)程結束。表2為不同煤種的特征溫度。吸附是一個(gè)可逆放熱過(guò)程吸附速度相對較快,易達表2不同煤種的特征溫度Table 2 The characteristic temperatures of different coals C煤種物理吸附受熱分結束溫度臨界溫度增速溫度解溫度著(zhù)火點(diǎn)最大失重速率點(diǎn)溫度燃盡點(diǎn)錫盟褐煤23.3298.3345.0390.0454.2印尼褐煤245.8288.3330.8405.8大同煙煤50.0232.5336.7401.7453.3500.8平頂山煙煤47.5236.7374.2441.7505.8551.7神華低灰煙煤43.3237.5345.8424.2465.0512.5陽(yáng)泉無(wú)煙煤70,0524.2567.5609.0由表2可見(jiàn),錫盟褐煤和印尼褐煤的臨界溫度、力學(xué)參數。某一時(shí)刻反應的轉化率為:受熱分解溫度、著(zhù)火點(diǎn)都明顯低于煙煤和無(wú)煙煤(1)因此,褐煤的自燃傾向性高于其他煤種。式中,mo為失水結束時(shí)樣品的質(zhì)量,m1為反應結束2.2自燃動(dòng)力學(xué)分析通過(guò)熱重分析獲得的反應動(dòng)力學(xué)參數可以宏觀(guān)時(shí)樣品的質(zhì)量,m為某一時(shí)刻樣品的質(zhì)量。動(dòng)力學(xué)基本方程為地表征煤的整個(gè)化學(xué)反應過(guò)程,其中活化能可以定da量地表征煤的自燃傾向性,活化能越低,自燃傾向性d=k·f(a)(2)越強6,14式中,t為時(shí)間做÷為動(dòng)力學(xué)機采用單個(gè)掃描速率法的 Coats-Redfern積分理函數法m,對 TG-DTG曲線(xiàn)進(jìn)行分析,計算得出相關(guān)動(dòng)CNMHG由 ArrhenIus在知http:/www.rlfd.com.cnhttp://rlfd.periodicalsnet.cn熱力發(fā)電2014年k= AexpC-E/RT(3)溫速率將煤樣由20℃加熱至800℃。反應氣氛為式中:A為指前因子;E為表觀(guān)活化能,kJ/mol;R為空氣,流量為50mL/min;保護氣為氮氣,流量為普適氣體常數,8.314J/(mol·K);T為熱力學(xué)溫40mL/min。圖4為不同粒徑煤樣的TG曲線(xiàn)表4度為氧化過(guò)程中的主要特征溫度。由升溫速率B=dT/dt可得:—粒徑60100"m2一粒徑>100~120umdadT=xp(=E/RT)·f(a)(4)3一粒徑>120-200um80假設反應符合反應級數模型,f(a)=(1-a)n,由Coats- Redfern一級近似整理可得:In(l-a)RT(n=1)(5)200400600800溫度/℃(1-a)1圖4不同粒度錫盟褐煤的TG曲線(xiàn)T2(1-n)Fig 4 TG curves of the Ximeng lignitenrF(1--RTwith different particle sizesE表4不同粒度錫盟褐煤的特征溫度因為,一般活化能E遠大于溫度T,所以(1Table 4 Characteristic temperatures of the Ximeng lignite2RT/E)≈1。將熱重實(shí)驗數據代人得到式(5)和式with different particle sizes(6)左端的值,并繪制1/T曲線(xiàn),根據擬合直線(xiàn)的斜臨界溫度/℃受熱分解溫度/℃率得出活化能E,再由直線(xiàn)截距得到指前因子A粒徑/p43.3335.0計算中溫度范圍取自煤樣吸氧增重結束開(kāi)始受熱分>100~12039.2332.5解時(shí)的溫度到著(zhù)火點(diǎn)溫度,n取1。計算結果見(jiàn)表3。330.0表3 Coats-Redfern法求解煤樣動(dòng)力學(xué)參數由圖4和表4可見(jiàn),臨界溫度和受熱分解溫度Table 3 The samples dynamic parameters obtained均隨著(zhù)粒徑的減小而減小,表明粒徑越小反應越容by Coats-Redfern integral method易進(jìn)行,即更容易自燃。煤種活化能E相關(guān)性系數/(kJ·mol-1)指前因子A2.3.2氧濃度盟褐煤119.580.9859尼褐煤分別采用含氧體積分數為5%、9%、13%、大同煙煤122.910.986217%、21%的氮氧混合氣體,錫盟褐煤煤樣粒度為平頂山煙煤127.730.9825120~200m,升溫速率為20℃/min,樣品由20℃神華低灰煙煤135.420.9889陽(yáng)泉無(wú)煙煤173.250.9879加熱到800℃,氣體流量為50mL/min。圖5為不同含氧濃度下的TG曲線(xiàn),表5為不同氧濃度下錫由表3可知,6種煤在氧化熱解反應中一級反盟褐煤的特征溫度應的A均大于0.98,因此認為其氧化熱解均為一級含氫量5%化學(xué)反應,比較E得到6種煤的自燃傾向性為:印1102—含氧量91003—含氧量13%尼褐煤>錫盟褐煤>大同煙煤>平頂山煙煤>神華-4含氧量17%65—含氧量21%低灰煙煤>陽(yáng)泉無(wú)煙煤。這與上述特征溫度值及實(shí)際應用中褐煤自燃傾向明顯的特征基本吻合,因此基于熱重分析的煤的活化能可以作為鑒定煤自燃傾向性的指標之一。2.3褐煤自燃的影響因素200400600800溫度/r2.3.1煤樣粒度tH中國煤化工曲線(xiàn)分別取粒徑為60~100、>100~120、>120CNMHG200μm的錫盟褐煤煤樣約5mg,以10℃/min的升trationshttp:lwww.rlfd.comcnhttp:/rlfd.periodicalsnet.cn第6期張斌等褐煤自燃特性熱重實(shí)驗及動(dòng)力學(xué)分析衰5不同氧濃度下錫盟褐煤的特征溫度progress on the mechanism and predictionof coal sponTable 5 Characteristic temperatures of the Ximeng lignitetaneous combustion[J]. Journal of Liaoning Technicalwith different oxygen concentrationsUniversity,2003,22(4):455-459氧濃度/%臨界溫度/℃受熱分解溫度/℃[4]石憲奎煤自燃的原因及傾向性預測[J].煤炭加工與334.0綜合利用,2002(1):41-4355.0SHI Xiankui. The reason and prediction of the tenden-323.0cy of coal spontaneous combustion [J]. Coal Processing56.0318.0Comprehensive Utilization, 2002(1)241-4357.0320.0[5]薛冰,李再峰,陳興權,等.低階煤在干燥氧氣下低溫氧化過(guò)程的機理研究[J.煤炭轉化,2006,29(2):12-15由圖5、表5可見(jiàn),隨氧濃度的增大,熱重曲線(xiàn)XUE Bing, LI Zaifeng, CHEN Xingquan, et al. Mecha向低溫區靠近,但氧濃度為17%時(shí)的熱重曲線(xiàn)比氧nismoflowtemperature oxidation of low rank coal under濃度為21%時(shí)更靠近低溫區。這可能是因為氧濃dry oxygen[J]. Coal Conversion, 2006,29(2):12-15度高于17%時(shí),化學(xué)反應釋放氣體與氧氣吸收相[6]陸偉,王德明,仲曉星,等基于活化能的煤自燃傾向性抵,從而延緩了氧化反應過(guò)程。因此,氧濃度并非越研究[].中國礦業(yè)大學(xué)學(xué)報,2006,35(2):201-205高,煤自燃傾向性越大。LU Wei, WANG Deming, ZHONG Xiaoxing, et al.Tendency of spontaneous combustion of coal based on3結論activation energy [J]. Journal of China University ofMining Technology, 2006,35(2): 201-205(1)錫盟褐煤和印尼褐煤的臨界溫度、受熱分解[η]李宗輸.采空區遺煤自燃過(guò)程及其規律的數值模擬研溫度、著(zhù)火點(diǎn)均明顯低于其他煙煤和無(wú)煙煤。因此究[J].中國安全科學(xué)學(xué)報,2005,15(6):5-19褐煤的自燃傾向性強于其他煤種。LI Zonghan. Numerical simulation study ofcoal spon(2)6種煤的氧化燃燒過(guò)程屬于一級化學(xué)反應,taneous combustion in mined-out area[J]. China Safety由活化能推測出其自燃傾向性為:印尼褐煤>錫盟Science Journal, 2005, 15(6): 15-19.褐煤>大同煙煤>平頂山煙煤>神華低灰煙煤>陽(yáng)[8]房俊卓,張霞,梁志海.儀器分析法研究寧夏煤結構泉無(wú)煙煤。這與特征溫度點(diǎn)分析結果基本一致,表[J].寧夏工程技術(shù),2007,6(1):40-42明采用活化能來(lái)表征煤自燃傾向性是可行的FANG Junzhuo, ZHANG Xia, LIANG Zhihai. Research(3)煤樣粒徑越小,褐煤自燃傾向性越強;氧氣on the structure of Ningxia Coal with instrumentamethod[J ]. Ningxia Engineering Technology, 2007濃度增大煤樣更易自燃,但在氧氣濃度為17%時(shí)6(1):40-42表現出了不一致性。[9]劉棋峰.基于熱重分析的煤氧復合過(guò)程中特征溫度點(diǎn)的研究[D].西安:西安科技大學(xué),2007參考文獻]LIU Qifeng. The study on characteristic temperature[1]王繼仁,金智新鄧存寶煤自燃量子化學(xué)理論[M].北point in the process of the oxidation of coal based on京:科學(xué)技術(shù)出版社,2007.thermogravimetric analysis[D]. Xi'an: Xi'an UniversityWANG Jiren, Jin Zhixin, DENG Cunbao. Theory ofof Science and Technology, 2007.quantum chemistry of coal spontaneous combustion[10]何啟林,王德明. TG-DTA-FTIR技術(shù)對煤氧化過(guò)程的[M]. Beijing: Science and Technology Press, 2007(in規律性研究[J煤炭學(xué)報,205,30(1):5357Chinese)HE Qilin, WANG Deming. Comprehensive study on[2]李增華,煤炭自燃的自由基反應機理[J].中國礦業(yè)大the rule of spontaneous combustion coal in oxidation學(xué)學(xué)報,1996,25(3):112-113process by TG-DTA-FTIR technology[J]. Journal ofLI Zenghua. The mechanism of free radical reaction ofChina Coal Society, 2005, 30(1):53-57coal spontaneous combustion[J] Journal of China Uni- [11] Kathy E, Benfell B, Basil Bcamish K, et al. Thermo-versity of Mining Technology, 1996, 25(3):112gravimetric analytical procedures for characterizing113New Zealand and Eastern Australiancoals[J].Thermo[3]鄧軍,徐精彩,陳曉坤.煤自燃機理及預測理論研究進(jìn)中國煤化工展[].遼寧工程技術(shù)大學(xué)學(xué)報,2003,22(4):455-459.[12]張嬿妮VLCNMHG素的熱重分DENG Jun, XU Jingcai, CHEn Xiaokun. The researchJ.西安科儀人享子報,∠U,∠81z):588-391http://www.rlfd.com.cnhttp://rlfd.periodicals.net.cn熱力發(fā)電2014年ZHANG Yanni, dENg Jun, LUO Zhenmin, et alactivated energy view [J]. China Safety Science Jour-Thermogravimetric analysis on influence factor of coalnal,2005,15(1):11-13.spontaneous combustion[]. Journal of Xian University[16]余明高,鄭艷敏,路長(cháng),等.煤自燃特性的熱重紅外光of Science and Technology, 2008, 28(2): 388-391譜實(shí)驗研究[河南理工大學(xué)學(xué)報,2009,28(5):547[13]肖旸馬礪,王振平,等采用熱重分析法研究煤自燃過(guò)551程的特征溫度[J].煤炭科學(xué)技術(shù),2007,35(5):73-76YU Minggao, ZHEN Yanmin, LU Chang, et al. ExperiXIAO Yang, MA Li, WANG Zhenping, et al. Researchment research on coal spontaneous combustion characon characteristic temperature in coal spontaneous comteristics by TG-FTIRDJ] Journal of Henan Polytechnicbustion with thermal gravity analysis method[J]. CoalUniversity,2009,28(5):547-551.Science and Technology, 2007, 35(5): 73-76[17] Liu L, Li L P, Zhou J M,et al. Thermogravimetric a14]劉鰣,陳文勝,齊慶杰基于活化能指標煤的自燃傾向nalysis of combustion characteristics for blended coals性研究[J].煤炭學(xué)報,2005,30(1):67-70.U]. Journal of Changsha University Science and TechLIU Jian, CHEN Wensheng, QI Qingjie. Study on thenology Natural Science, 2005(4)spontaneous combustion tendency of coal based on acti-[18]戴廣龍煤低溫氧化及自燃特性的綜合實(shí)驗研究[M]vation energy index]. Journal of China Coal Society徐州:中國礦業(yè)大學(xué)出版社,20102005,30(1):67-70.DAI Guanglong Comprehensive experimental study on[15]秦波濤,王德明,李增華,等.以活化能的觀(guān)點(diǎn)研究煤炭coal low temperature oxidation and spontaneous com-自燃機理[J].中國安全科學(xué)學(xué)報,2005,15(1):11-13bustion characteristic[MI. Xuzhou: China University ofQIN Botao, WANG Deming, LI Zenghua, et al. StudyMining and Technology Press, 2010(in Chinese)on the mechanism of coal spontaneous combustion witheoeoeoeoeoooeoeoeoeoeoeoooe0eoeeoeoooeoeoooeoeoeoeoeoeoeoeoe0ooo0oooooooooooooooooooo(上接第54頁(yè))[7]李雙雙,馬琪劉振華.納米流體在銅絲絲網(wǎng)平板熱管onon heat transfer performance of flat heat pipes中的應用[J].上海交通大學(xué)學(xué)報,2013,47:55559with ultra-light porous metal foam wicks[J].ProceedLI Shuangshuang, MA Qi, LIU Zhenhua. Applicationngs of the CSEE, 2013, 33: 72-79of water-based nano-fluid in copper wire flat heat pipe[10]王晨,劉中良,張廣孟,等新型微槽道平板熱管的實(shí)驗with mesh structure[J] Journal of Shanghai Jiaotong研究[].工程熱物理學(xué)報,2013,34:698-701University,2013,47:55559.WANG Chen, LIU Zhongliang, ZHANG Guangmeng[8] Peng H, Li J, Ling X. Study on heat transfer performet al. Experimental investigation of a flat heat pipe withance of an aluminum flat plate heat pipe with fins inntersected micro-grooves [J]. Journal of Engineeringvapor chamber [J]. Energy Conversion and ManageThermophysics, 2013, 34: 698-701ment,2013,74:4450[11] Maheshkumar P, Muraleedharan C Minimization of en[9]紀獻兵,徐進(jìn)良, Abanda A m,等超輕多孔泡沫金屬ropy generation in flat heat pipe [J]. International平板熱管的傳熱特性研究[J].中國電機工程學(xué)報,Journal of Heat and Mass Transfer, 2011, 54(1):645-2013,33:72-79648.JI Xianbing, XU Jinliang, Abanda A M,et al. Investiga中國煤化工CNMHGhttp:www.rlfd.com.cnhttp:rlfd.periodicals.net.
-
C4烯烴制丙烯催化劑 2020-08-31
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-08-31
-
生物質(zhì)能的應用工程 2020-08-31
-
我國甲醇工業(yè)現狀 2020-08-31
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-08-31
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-08-31
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-08-31
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-08-31
-
甲醇制芳烴研究進(jìn)展 2020-08-31
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-08-31