

水煤漿氣化爐內飛灰的形成機理
- 期刊名字:化工學(xué)報
- 文件大?。?47kb
- 論文作者:池國鎮,郭慶華,龔巖,張婷,梁欽鋒,于廣鎖
- 作者單位:華東理工大學(xué)煤氣化教育部重點(diǎn)實(shí)驗室
- 更新時(shí)間:2020-07-13
- 下載次數:次
第63卷第2期化工學(xué)報Vol. 63 No. 22012年2月CIESCJournalFebruary 2012出研究論文資水煤漿氣化爐內飛灰的形成機理5339332333池國鎮,郭慶華,龔巖,張婷,梁欽鋒,于廣鎖(華東理工大學(xué)煤氣化教育部重點(diǎn)實(shí)驗室,上海200237)摘要:基于實(shí)驗室規模的多噴嘴對暨式水煤漿氣化爐,利用SEM、馬爾文微光粒度儀和XRD表征氣化爐內飛灰的粒徑分布和組成,并分析了氣化爐內飛灰的形成機理。結果表明,噴嘴平面處飛灰與氣化爐出口處飛灰的粒徑分布及化學(xué)組成存在顯著(zhù)差異,不同氣化階段飛灰的形成機理也不同。氣化燃燒階段飛灰的形成機理為部分固定碳燃燒和外在礦物轉化,而在焦炭氣化反應階段,飛灰的形成機理為焦炭破碎和內在礦物釋放及轉化。關(guān)鍵詞:煤氣化;飛灰形成;礦物轉化DOI: 10. 3969/j. issn. 0438-1157. 2012. 02. 035中圖分類(lèi)號: TQ 541文獻標志碼: A文章編號: 0438-1157 (2012) 02-0584-09Ash formation mechanisms during gasificationin coal-water slurry gasifierCHI Guozhen, GUO Qinghua, GONG Yan, ZHANG Ting, LIANG Qinfeng, yu Guangsuo(Key Laboratory of Coal gasification of Ministry of Education , East China University ofScience and Technology , Shanghai 200237, China)Abstract: Ash formation during coal gasification was investigated based on bench scale OMB gasifier.Particle size and composition of the initial minerals and the resulting fly ash were measured by SEM, XRF,XRD and Malvern Laser Particle Sie Analyzer. The results showed that particle size distribution andcomposition of fly ash were significantly different between fly ash at impinging zone and fly ash at gasifier .outlet. Particle size distribution offly asat impinging zone was slightly finer than that of raw coal,composition of fly ash at impinging zone was quartz, calcite and FeS. Particle size distribution of fly ash atgasifier outlet dramatically decreased compared to that of fly ash at impinging zone, and composition of flyash at gasifier outlet was quartz, calcite, FeS, mullite, anorthite, gehlenite and calcium oxide. Ashformation mechanisms at different gasification stages were also diferent. Part of fixed carbon combustionand excluded mineral transformation were the mechanisms of ash formation at the combustion stage, charfragmentation and included mineral liberatioliberation and transformation were the mechanisms of ash formation atthe char gasification stage.Key words: coal gasification; ash formation mechanism; mineral transformation引| 言煤基化學(xué)品(氨、甲醇、二甲醚等)、煤基液體燃料、IGCC 發(fā)電、多聯(lián)產(chǎn)系統、制氫和燃料電池等煤炭氣化是煤炭潔凈利用的有效途徑之一,是工業(yè)的基礎。氣流床煤氣化技術(shù)以單爐容量大、煤.2011-05- - 19收到初稿.2011-11-04 收到修改稿.Rccived date: 2011-05- - 19.聯(lián)系人:于廣債。第- -作者:池國鎮(1985-). 男,硬士研Corresponding anotbor: Prof. YU Guangsuo, gsyu@ ecust. edu.究生。金項目:國家自然科學(xué)基金項目(21006026); 國家重點(diǎn)基Foundatioa items: supported by the National Natural Science礎研究發(fā)展計劃項目(2010CB227004).Foundation of China (21中國煤化工ResarchProgram of China (2010TYHCNMHG .第2期池國鎮等:水煤漿氣化爐內飛灰的形成機理585種適應性好、碳轉化率高和變負荷能力強等優(yōu)點(diǎn)而及灰熔點(diǎn)見(jiàn)表1,灰成分見(jiàn)表2,粒徑分布見(jiàn)圖1.成為煤氣化的首選技術(shù)1。目前,氣流床煤氣化技煤炭浮沉試驗表明,該煤種密度大于2.0 g. cm~3術(shù)有兩種進(jìn)料方式,分別是水煤漿和干粉煤。以水部分占煤樣的5.2%。由于密度大于2.0 g. cm-3煤漿進(jìn)料的煤氣化技術(shù)有OMB、GE和E-Gas;以的部分的可燃物含量?jì)H為18. 04%,因此認為該部干粉煤進(jìn)料的煤氣化技術(shù)有Shell、 Prenflo、 GSP分的主要成分是外在礦物。外在礦物和原煤的和MHI等[2]。在氣流床氣化爐內,煤粉顆粒逐漸XRD圖譜見(jiàn)圖2。對該圖譜的分析表明,試驗原形成粒徑更小的飛灰,大部分飛灰碰撞到氣化爐的煤的外在礦物主要是石英、方解石、黃鐵礦、菱鐵壁面,黏附在壁面形成熔融的熔渣并沿壁面流下排礦和高嶺石,原煤中檢測到的礦物種類(lèi)和外在礦物出氣化爐。碰撞到壁面的顆粒由于停留時(shí)間大大增的種類(lèi)相同。試驗煤樣制成62%的水煤漿后,在加而提高了碳轉化率[1]。由此可見(jiàn),飛灰的粒徑分實(shí)驗室規模的多噴嘴對置式水煤漿氣化爐內進(jìn)行氣布以及化學(xué)組成對壁面熔渣的沉積行為有重要影響?;囼?。目前,國內外研究者對煤燃燒過(guò)程中的飛灰形成及礦物轉化進(jìn)行了較為深人的研究。于敦喜等[4]研究了煤焦在燃燒過(guò)程中的膨脹特性及對殘灰飛灰生成的影響;劉建忠等[6]研究了燃煤細灰的形成及微觀(guān)形態(tài)特征;于敦喜等[67]用CCSEM分析得到煤中礦物的內在/外在分布,分別研究了內在礦物.和外在礦物的成灰機理; Mclennan 等[8] 研究了還原性氣氛下粉煤燃燒過(guò)程中內在礦物和外在礦物的轉化機理; Liu 等[9]研究了粉煤燃燒條件下內在礦物和外在礦物的礦物轉化和飛灰形成機理;Ichika-wa等[10]研究了兩段空氣氣化爐內煤焦的形成及其0.010.11000 10000particle size/μm沉積特性; Matsuoka 等[1研究了煤氣化過(guò)程中無(wú)試驗煤樣的粒徑分布機礦物的轉化過(guò)程;白進(jìn)等[2)研究了高溫弱還原Fig.1 Particle size distribution of raw coal性氣氛下礦物的轉化過(guò)程;廖胡等[13]研究了多噴嘴對置式水煤漿氣化爐內飛灰的性質(zhì)。然而,水煤表2試驗用煤的灰分組成Table2 Ash composition/% (mass)漿氣化爐內飛灰形成機理的研究卻鮮有報道。氣化爐內飛灰的形成過(guò)程決定了其粒徑分布和CaO Al2O3Fe2()3 SOg Mg() K2() NazO TiO2 Others35. 76 19. 98 18.84 15.703.481.511.481.120.86 1.27化學(xué)組成,從而影響顆粒的沉積行為,進(jìn)而影響氣化爐的排渣性能及碳轉化率。因此,為了提高氣化1.2煤氣化熱模試驗平臺爐排渣性能及碳轉化率,有必要對氣化爐內飛灰的多噴嘴對置式水煤漿熱模試驗平臺如圖3所形成機理進(jìn)行深人的研究。本文基于實(shí)驗室規模的示。4個(gè)噴嘴在氣化爐中上部水平對置安裝,氣化多噴嘴對置式水煤漿氣化爐,研究水煤漿氣化爐內爐外層為不銹鋼簡(jiǎn)體,內襯為耐火磚,中間填充硅飛灰的形成機理。酸鋁保溫棉。爐膛內徑為300 mm,外徑為8001試驗部分mm,總高度約2200mm,噴嘴離拱頂的距離為.600mm。在氣化爐的側面不同軸向位置有取樣口1.1 試驗原煤及溫度測量口。水煤漿由單螺桿泵輸送至噴嘴中心試驗煤樣為神府煙煤,其工業(yè)分析、元素分析通道與經(jīng)氣體質(zhì)量流量計后送至噴嘴外通道的純氧表1試驗 用煤的煤質(zhì)分析Table 1 Coal propertiesProximate analysis/ % (mass)Ultimate analysis/ % (mass)_M。AsV。N.Sd_0FT3. 1710.29 33. 6956. 0273. 976.281.491. 036. 94中國煤化工1240TYHCNMHG586●化工學(xué)報第63卷1000 excludedQ- quarzt S-siderite行后續處理。實(shí)驗條件為氧氣總流量16.7 m2●12000 excluded9| IC_ CalciteK-kaolinitemineralKaoiniteh-',出口氣速約為120 m.s~',煤漿總進(jìn)料量為8000P- pyrite600041 kg. h-', 0/C約為1.0, 相機吹掃保護氣Ar40002000流量約為2.0m'●h'.氣化爐詳細的溫度分布、氣體組成分布及停留時(shí)間分布見(jiàn)文獻[14-16].500 raw coalQ一quart S - - siderite5000C一calcite K- kaolinite1.3飛灰的取樣4000 t取樣系統由高溫水冷取樣管、分離過(guò)濾裝置和30002000 t智能真空泵組成,如圖4所示。氣化爐穩定運行1o 2030405060780后,在5*取樣口和14#取樣口對飛灰進(jìn)行等速取20/(9)樣。5*取樣口位于噴嘴平面處(即氣化燃燒區),圖2試驗煤樣及外在礦物的XRD圖譜14#取樣口位于氣化爐出口附近,離氣化爐出口的Fig.2 XRD pattern of raw coal and excluded minera!距離為100 mm (即氣化反應區),見(jiàn)圖1.取得一起進(jìn)人氣化爐。高速射流的氧氣將水煤漿霧化并的兩個(gè)飛灰樣品分別記為Flyash (impinging zone)在爐內撞擊氣化燃燒,經(jīng)過(guò)氣化燃燒與氣化反應后和Flyash (gasifier outlet),分別代表氣化燃燒區生成合成氣和飛灰,大部分飛灰碰撞到壁面形成熔和氣化反應區形成的飛灰。取樣區域的氣體組成及渣。合成氣、飛灰和熔渣一起進(jìn)入激冷室冷卻后進(jìn).溫度見(jiàn)表3。[@]一丙口tobumer2應--[]一-=toburmer3一[0O]--兩一c to burner4axygcn from2*djiesel from 2*>5"④兩一9|8*9#o100-園園+ol!0一園To13*10咖ol4'gasifier outlet (to quench chumber)圖3多噴嘴對置式水煤漿氣化熱模試驗平 臺Fig. 3 Bench-scale OMB entrained flow gasifier1- -gasifiers 2- -burner1#; 3--burner2*; 4- -burner 3* and burner4*; 5- -camera; 6- -endoscope;8--screw pump; 9- diesel tank; 10- gear pump; 11- -mass flow meter; 12- -gas p14- video apture card; 15- temperature acquisition card; 16中國煤化工TYHCNMHG第2期池國鎮等:水煤漿氣化爐內飛灰的形成機理●587●表3取樣區域的氣體成分及溫度可燃物含量見(jiàn)表4。從表4可以看出,噴嘴平面處Table3 Gas composition and temperature of sampled zone飛灰的可燃物含量比原煤下降了5%左右。氣化爐Gas composition/%(vol.) H2S Temperature出口處飛灰的可燃物含量相對于噴嘴平面處飛灰的Sampled positionco CO2 H2 CH4 X10-8C可燃物含量下降了30%左右。飛灰經(jīng)過(guò)篩分后,impinging zone45.73 33.56 20.65 0.06 1493.91 1392. 68分別測量不同粒徑范圍的飛灰的可燃物,其含量見(jiàn)gasifier outlet41.85 28.73 29.07 0.35 567.43 1190. 49圖5。從圖5中可以看出,各粒徑范圍內顆粒的可燃物含量比較均勻,細顆粒的可燃物含量略低于粗cooling water out顆粒的可燃物含量。.filter vacuum pump表4樣品的總體可燃物含量Table4 Total combustible content of samples/% (mass)gasifier安cooling water inRaw coal Flyash(impinging zone) Flyash( gasifier outlet)cyclone89.7185. 8354. 58圖4 飛灰的取樣系統Fig. 4 Sampling system of flyash100-27A raw coal flyash(impinging zone)1.4分析測方法flyash(gasifier outlet)1.4.1可燃物含量測試 采用 Loss On Ignition(LOI)方法測飛灰的可燃物含量。準確稱(chēng)取一定量的樣品,放人恒重坩堝中在馬弗爐內灰化,然后E 6C按下式計算可燃物含量C=m二mx100%(1式中mo 表示灰化前樣品的質(zhì)量,m,表示灰化后樣品的質(zhì)量。1.4.2粒徑分布測量粒徑分布采 用馬爾文激光< :30> 100粒度儀測量。為了進(jìn)一步揭示造成粒徑減小的原particle size/um因,將馬爾文激光粒度儀測量結果按<30 μm、圖5原煤、噴嘴平面處飛灰和氣化爐出口30~44 μm、44~74 μm、74~100 μm、> 100 μm .處飛灰的可燃物含量分布五部分進(jìn)行分類(lèi)。對于不能由馬爾文激光粒度儀測Fig. 5 Combustible content distribution of raw coal, flyashat impinging zone and flyash at gasifier outlet量粒徑分布的顆粒,如噴嘴平面處由原煤的礦物轉化而來(lái)的顆粒,將采用計數的方法統計其粒徑分2.2粒徑分布布。首先由掃描電子顯微鏡得到噴嘴平面處取得的原煤、噴嘴平面的飛灰和氣化爐出口處飛灰的飛灰的背散射圖像,背散射圖像中高亮的顆粒為原粒徑分布如圖6(a)所示。從圖6(a)可以看出,煤的礦物轉化而來(lái)的顆粒。運用ImageJ軟件通過(guò)噴嘴平面處飛灰的粒徑比原煤的粒徑小,而氣化爐調節圖像的閾值,識別出圖像中的高亮顆粒,然后出口處飛灰的粒徑比噴嘴平面處飛灰的粒徑小。對計算這部分顆粒的粒徑。通過(guò)計算超過(guò)3000個(gè)顆圖6(a)中的粒徑分布進(jìn)行不同粒徑范圍劃分,得粒以得到可信的粒徑分布。到5個(gè)粒徑范圍內飛灰含量百分數,如圖6(b)所1.4.3化學(xué)組成分析 樣品的 晶相組成采用日本.示。從圖6(b)可以看出,噴嘴平面處粒徑<30RIGAKU公司的D/MAX2550VB/PCXRD分析μm的顆粒含量幾乎與原煤相同,粒徑為30~ 100,測試系統進(jìn)行測試。μm的顆粒相對于原煤略有增加,粒徑>100 μm的顆粒比原煤略有減少。由此可見(jiàn),噴嘴平面處的飛2結果和討論.灰的粒徑相對于原煤的粒徑略微減小。從圖6(b)2.1可燃物含 t中還可看出,氣華蛇出外中國煤化工的顆粒占原煤、噴嘴平面處飛灰和氣化爐出口處飛灰的53. 18%,而噴TYHCNMHG頁(yè)粒僅占588化工學(xué)報第63卷”「.rawcoal2 Taw coal, flyash(impinging zone)of▲ flyash(gasifter oulet)0lyash(gasifier oulle)'雪3:830器22(s 1s加mh .0.01 0.110001000 10000<3030一50 50一 76 76 一-100> 100particle size/um(a) particle size distribution(b) volume percentage of dfferent size ranges圖6原煤、噴嘴平面和氣化爐出口處飛灰的粒徑分布Fig.6 Particle size distribution of raw coal, flyash at impinging zone and flyash at gasifier outletQ- quarzt s- siderite。 excluded mineralQ| ICC- calcite K- kaoliniteQP - -pyriteQ- quarzt S- siderite. raw coalQ Q|。c-calcite K- kaoliniteQ- .quarzt C- -calciteI-iron sulfideQ一 quarzt C- calcite I - = iron sulfideA00E flyash(gasifier outlet) Q|A_ mullite G-gehlenit3000 FM- muinte Bentente2000G MAOG9LO20708020/(°)圖7外在礦物、原煤、噴嘴平面處飛灰和氣化爐出口處飛灰的XRD圖譜Fig.7 XRD pattern of excluded mineral, raw coal, flyash at impinging zone and flyash at gasifier outlet31.51%,粒徑>100μm的飛灰在氣化爐出口處僅段飛灰的化學(xué)組成存在較大差異。占11.76%,而在噴嘴平面處卻占27. 48%,其他2.4飛灰的形 成機理粒徑范圍內的顆粒與噴嘴平面處相同粒徑范圍內的在飛灰的形成過(guò)程中,煤中易熔的外在礦物在顆粒含量相差不大,可見(jiàn)氣化爐出口處飛灰的粒徑火焰中首先發(fā)生轉化,這個(gè)轉化過(guò)程決定了噴嘴平比噴嘴平面處顆粒的粒徑顯著(zhù)減小。面區域處顆粒碰撞到壁面前的化學(xué)組成及粒徑分2.3 XRD分析布。通常認為外在礦物在燃燒過(guò)程中發(fā)生部分破原煤、外在礦物、噴嘴平面處飛灰和氣化爐出碎,這個(gè)破碎過(guò)程可能導致飛灰的粒徑減小。在粉口處飛灰的XRD圖譜如圖7所示。從圖7中可以煤鍋爐內,外在礦物破碎被認為對飛灰的粒徑產(chǎn)生看出,原煤和外在礦物的主要成分是石英、方解不可忽略的影響1。在煤焦氣化過(guò)程中,導致殘石、黃鐵礦、菱鐵礦和高嶺石,噴嘴平面處的成分灰粒徑減小的機理有兩個(gè),分別是“縮核”和“破為石英、方解石和FeS,而氣化爐出口處的成分則碎”[18],是否發(fā)生破碎可能和煤種或者反應條件有有石英、方解石、硫化亞鐵、莫來(lái)石、鈣黃長(cháng)石、關(guān).“縮核”是指中國煤化工炭表面進(jìn)鈣長(cháng)石和氧化鈣。由此可見(jiàn),氣化爐內不同氣化階行,從而使顆粒的TYHCNMHG是指焦第2期池國鎮等:水煤漿氣化爐內飛灰的形成機理在礦物釋放,釋放的內在礦物轉化為FeS,使其術(shù)(5); 874-8834] Yu Dunxi (于敦喜), Xu Minghou (徐明厚),Liu Xiaowei射峰增強。根據以上分析及表3中的氣體成分及溫(劉小偉),Cao Qian (曹倩). Swelling characteristics of度,飛灰在氣化反應階段可能發(fā)生了以下轉化coal chars and formation of residual ash particles [J].3(Al2O,●2SiO2 )一+mulite(Als SiO1s ) + 4SiO2J. Huazhong Univ.of Sci.& Tech. : Nature Sciencecalcite(CaCO3)-→CaO + CO2Edition (華中科技大學(xué)學(xué)報:自然科學(xué)版), 2006, 34mullite(3Al2O3●2SiO2)+CaO一→(2): 101-1045] Liu Jjanzhong (劉建忠),Zhang Guangxue (張光學(xué)),anorthite(CaO. Al2O3●2SiO2)Zhou Junhu (周俊虎),Fan Haiyan (范海燕),Cen Kefaanorthite(CaO. Al2O3●2SiO2)+CaO一→(岑可法),Formation and micromorphology characteristicsgehlenite(2CaO. Al2O3●2SiO2)of fine particles generated during coal combustion [J]FeS2 +H2-→FeS+ H2SJournal of Chemical Industry and Engineering (China)(化工學(xué)報),2006,57 (12): 2976-29803.結論[6] Yu Dunxi (于敦喜),Xu Minghou (徐明厚),Yao Hong(姚洪),Liu Xiaowei (劉小偉),Lian z, Qunying W,基于實(shí)驗室規模的多噴嘴氣化爐,研究了水煤.Ninomiya Y. Study on coal mineral properties and their漿氣化爐內飛灰的形成機理,得到以下結論。transformation behavior during combustion by CCSEM [J].(1)水煤漿氣化爐內飛灰形成的過(guò)程中,噴嘴Journal of Engineering Thermophysics (工 程熱物理學(xué)報),2007, 28 (5): 875-878平面處飛灰與氣化爐出口處飛灰的粒徑分布及化學(xué)[7] Yu Dunxi (于教喜), Xu Minghou (徐明厚),Yao Hong組成存在顯著(zhù)差異,不同氣化階段飛灰的形成機理(姚洪),Liu Xiaowei (劉小偉),Zhou Ke (周科)。也不同。.Transformation of inorganic minerals into particulate matter(2)氣化燃燒階段飛灰的形成機理為部分固定during coal combustion [J ]. Journal of EngineeringThermophysics (工程熱物理學(xué)報),2008, 29 (3): 507-碳燃燒及外在礦物轉化,部分固定碳的燃燒使噴嘴平面處飛灰的粒徑比原煤略小,而外在礦物的轉化[8] Mclennan A R, Bryant G W. Stanmore BR, Wall T F. Ash則導致噴嘴平面處飛灰的化學(xué)組成為石英、方解石formation mechanisms during pf combustion in reducingconditions [J]. Energy Fuels, 2000, 14 (1): 150-159和FeS。在焦炭氣化反應階段,飛灰的形 成機理為[9]Liu Y. Gupta R, Wall T. Ash formation from excluded焦炭破碎和內在礦物釋放及轉化,焦炭破碎使氣化minerals including consideration of mineral-mineral爐出口處飛灰的粒徑比噴嘴平面處飛灰的粒徑顯著(zhù)associations [J]. Energy Fuels, 2007, 21 (2); 461-467減小,內在礦物釋放及礦物的進(jìn)一步轉化使氣化爐[10] Ichikawa K, Kajitani s, Oki Y, Inumaru J. Study on chardeposition characteristics on the heat exchanger tube in a出口處飛灰的化學(xué)組成為石英、方解石、FeS、莫coal gasifier -relationship between char formation and來(lái)石、鈣長(cháng)石、鈣黃長(cháng)石和氧化鈣。deposition characteristics [J]. Fuel, 2004, 83 (7/8):(3)在飛灰形成的過(guò)程中,高嶺石轉化為莫來(lái)1009-1017石后與CaO生成鈣長(cháng)石和鈣黃長(cháng)石。FeS 由原煤.[11] Matsuoka K, Suzuki Y, Eykands K E, Benson S A, TomitaS. CCSEM study of ash forming reactions during lignite中的黃鐵礦轉化而來(lái),而原煤中的菱鐵礦分解為.gasification [J]. Fuel, 2006. 85 (17/18); 2371-2376FeO后形成含鐵的玻璃體。部分石英與其他礦物[12] BaiJin (白進(jìn)). Li Wen (李文),Li Baoqing (李保慶).反應,其余石英仍保持原來(lái)的狀態(tài)隨合成氣離開(kāi)氣Mineral behavior in coal under reducing atmosphere st hightemperature [J ]. Journal of Fuel Chemistry and化爐。Technology (燃料化學(xué)學(xué)報), 2006. 34 (3); 292-297[13] Liao Hu (廖胡), Guo Qinghua (郭慶華). Liang QinfengReferences(梁欽鋒),Zhang Jian (張健),Liao Min (廖敏),Yu[1] Yu Guangsuo (于廣鎖),Niu Miaoren (牛苗任),WangGuangsuo (于廣鎖). Properties of fly ash in opposedYifei (王亦飛), Liang Qinfeng (梁欽鋒),Yu Zunhongmulti-burner gasifier [J]. CIESC Journal (化工學(xué)報),(于遵宏). Application status and development tendency of2009,60 (11); 2918-2923coal entrained-bed gasification [J]. Modern ChemicalIndustry (現代化工),2004, 24 (5); 23-26multi-burner gasifier and grey prediction of refractory bricks[2] Higman c. Burgt M J Vd. Gasification [M]. Oxford; Gulfcorrosion [D]. Shanghai: East Chine University of ScienceProfessional Publishing. 2008and Technology. 2010[3Montagnaro F,nalysis of char-sleg interaction[15] Guo Qinghua (郭慶華),Yu Guangsuo (于廣鎖), Liangand nearwall particle segregation in entrained-flowQinfeng (梁中國煤化工Atmophericgsificaion of coel [J]. Combustion and Flame, 2010,157 .hor-test onthe opposedYHCNMHG●592●化工學(xué)報第63卷multi- burner coal water slurry gasifier [J]. Proeedingsof2002, 81 (3); 337-344the CSEE (中國電機工程學(xué)報), 2009,29 (32); 19-23[18] Li S Char-slag transition during pulverized coal gasification[16] Ni Jianjun (倪建軍),Guo Qinghua (郭慶華),Liang[D]. Utah: The University of Utah, 2010Qinfeng (梁欽鋒),Yu Zunhong (于遵宏),Yu Guangsuo(于廣鎖). Stochastic modeling of particle residence timecoal combustion conditions [D]. Storrs, CT: Universitydistribution in impinging-streams gasifier [J]. Journal ofof Connecticut, 2005Chemical Industry and Engineering (China)(化工學(xué) 報),[20] LiuG, WuH, GuptaRP, Tate AG, Wll T F. Modeling2008, 59 (3): 567-573the fragmentation of non-uniform porous char particles[17] Yan L, Gupta RP, Wall T F. A mathematical model of ashduring pulverized coal combustion [J]. Fuel, 2000, 79formation during pulverized coal combustion [J]. Fuel,(6); 627-633中國煤化工MHCNMH G
-
C4烯烴制丙烯催化劑 2020-07-13
-
煤基聚乙醇酸技術(shù)進(jìn)展 2020-07-13
-
生物質(zhì)能的應用工程 2020-07-13
-
我國甲醇工業(yè)現狀 2020-07-13
-
JB/T 11699-2013 高處作業(yè)吊籃安裝、拆卸、使用技術(shù)規程 2020-07-13
-
石油化工設備腐蝕與防護參考書(shū)十本免費下載,絕版珍藏 2020-07-13
-
四噴嘴水煤漿氣化爐工業(yè)應用情況簡(jiǎn)介 2020-07-13
-
Lurgi和ICI低壓甲醇合成工藝比較 2020-07-13
-
甲醇制芳烴研究進(jìn)展 2020-07-13
-
精甲醇及MTO級甲醇精餾工藝技術(shù)進(jìn)展 2020-07-13